

ANEXO II

PROCEDIMENTO DE LICITAÇÃO N° 0045/2024

PROJETO BÁSICO

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

3

FOLHA:

1/132

		CONTRO	LE [DE REVISÕES		
	(A)	PRELIMINAR	(D)	PARA COTAÇÃO	(G)	CONFORME CONSTRUÍDO
TIPO DE EMISSÃO (T.E.)	(B)	PARA COMENTÁRIOS	(E)	PARA CONSTRUÇÃO	(H)	CANCELADO
(1.L.)	(C)	PARA CONHECIMENTO	(F)	CONFORME COMPRADO	(I)	APROVADO

REV.	T.E.	DESCRIÇÃO
0	В	EMISSÃO INICIAL
1	В	ATUALIZAÇÃO DA BATIMETRIA
2	В	REVISÃO GERAL
3	В	REVISÃO DO CRONOGRAMA DA OBRA

	REV. 0	REV. 1	REV. 2	REV. 3	REV. 4
DATA	18/04/2024	15/05/2024	17/06/2024	12/07/2024	
EXECUÇÃO	VB	BS	BS	BS	
VERIFICAÇÃO	BS	DC	DC	DC	
APROVAÇÃO	DC	AM	AM	АМ	
	REV. 5	REV. 6	REV. 7	REV. 8	REV. 9
DATA					
EXECUÇÃO					
VERIFICAÇÃO					
APROVAÇÃO					

AS INFORMAÇÕES DESTE DOCUMENTO SÃO DE PROPRIEDADE DA INFRAS ENGENHARIA, SENDO PROIBIDA SUA UTILIZAÇÃO FORA DA SUA FINALIDADE SEM UMA PRÉVIA AUTORIZAÇÃO.

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

-

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

2/132

SUMÁRIO

1.	DOCUMENTOS DE REFERÊNCIA	12
2.	INTRODUÇÃO	12
3.	REQUISITOS GERAIS	14
3.1.	SISTEMA DE UNIDADES	14
3.2.	REFERÊNCIAS PLANIALTIMÉTRICAS	14
4.	CARACTERIZAÇÃO DE SEDIMENTOS	14
4.1.	METODOLOGIA	15
4.1.1.	PONTOS AMOSTRAIS	15
4.1.2.	COLETA DAS AMOSTRAS	17
4.1.3.	CRONOGRAMA DAS CAMPANHAS E PARÂMETROS MONITORADOS	
4.2.	RESULTADOS E DISCUSSÕES	21
4.2.1.	CARACTERIZAÇÃO GRANULOMÉTRICA	21
4.2.2.	CARACTERIZAÇÃO QUÍMICA	34
4.2.3.	DETERMINAÇÃO DA MACROFAUNA BENTÔNICA DE FUNDO INCONSOLIDADO	41
4.2.4.	DETERMINAÇÃO DA ECOTOXICIDADE	55
4.3.	INTEGRAÇÃO DOS RESULTADOS	62
4.3.1.	TABELAS DE DECISÃO	62
4.4.	CONSIDERAÇÕES FINAIS	70
5.	BOTA-FORA	75
6.	PROJETO GEOMÉTRICO DE DRAGAGEM	78
6.1.	TALUDES E TOLERÂNCIA VERTICAL	78

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

6.2.	ÁREAS DE DRAGAGEM	.78
6.2.1.	DÁRSENA E BACIA DE EVOLUÇÃO	.79
6.2.2.	CANAL INTERNO	.80
6.2.3.	CANAL EXTERNO	.81
6.3.	RESUMO DAS GEOMETRIAS	.82
7.	VOLUMES A SEREM DRAGADOS	.83
7.1.	METODOLOGIA EMPREGADA	.83
7.2.	DADOS UTILIZADOS	.84
7.3.	RESULTADOS	.86
7.3.1.	DÁRSENA E BACIA DE EVOLUÇÃO	.86
7.3.2.	CANAL INTERNO	.89
7.3.3.	CANAL EXTERNO	100
7.3.4.	RESUMO	117
8.	DRAGAGEM DE MANUTENÇÃO1	17
8.1.	ATIVIDADE DE DRAGAGEM	117
8.2.	CARACTERISTICAS GERAIS	117
	DESCRIÇÃO DO EQUIPAMENTO DE DRAGAGEM - DRAGAGEM HIDRÁULICA DO MA AQUAVIÁRIO COM DRAGA DE SUCÇÃO AUTOTRANSPORTADORA E DESCARTE EA MARINHA	
9. APOIO	METODOLOGIA EXECUTIVA - CANTEIRO DE OBRAS, INFRAESTRUTURA DE DE INSUMOS	
10. MONIT	PROCEDIMENTOS GERAIS DE CONTROLE E ACOMPANHAMENTO - TORAMENTO E CONTROLE DAS ATIVIDADES DE DRAGAGEM1	123
10.1.	CONTROLE DE DRAGAGEM	123

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

-

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

10.1.1.	PROGRAMA DE GESTÃO AMBIENTAL DA DRAGAGEM DE MANUTENÇÃO	123
10.1.2.	DEMAIS AÇÕES DE CONTROLE SUGERIDAS	124
10.2.	COMUNICAÇÃO A CAPITANIA DOS PORTOS	126
11.	CRONOGRAMA DE DRAGAGEM	.127
12.	SUMÁRIO EXECUTIVO DO PROJETO	.130

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

REV:		
	3	
FOLHA:		

5/132

LISTA DE FIGURAS

Figura 1. Localização de São Francisco do Sul – SC
Figura 2. Localização do Terminal
Figura 3. Localização dos pontos amostrais do Programa de Monitoramento do Sedimento na região de influência do Porto de São Francisco do Sul
Figura 4. Esquema de funcionamento do pegador de fundo do tipo Van Veen para coleta de macrofauna. Fonte: http://www.esgemar.com
Figura 5. Draga tipo van Veen utilizada para coleta de sedimentos superficiais19
Figura 6. Draga tipo <i>van Veen</i> utilizada para coleta de macrofauna bentônica de fundo inconsolidado.
Figura 7. Distribuição das frações granulométricas de 27 amostras de sedimentos superficiais coletados na área de influência do Porto de São Francisco em março de 202322
Figura 8. Distribuição das frações granulométricas de 27 amostras de sedimentos superficiais coletados na área de influência do porto de São Francisco do Sul
Figura 9. Distribuição das frações granulométricas de 27 amostras de sedimentos superficiais coletados na área de influência do porto de São Francisco do Sul
Figura 10. Distribuição das frações granulométricas de 27 amostras de sedimentos superficiais coletados na área de influência do porto de São Francisco do Sul
Figura 11. Tamanho médio de grão (phi – eixo secundário) e percentuais de matéria orgânica e carbonatos (% - eixo primário) obtidos em 27 amostras de sedimentos superficiais coletados na área de influência do Porto de São Francisco de Sul em março de 2023
Figura 12. Tamanho médio de grão (phi – eixo secundário) e percentuais de matéria orgânica e carbonatos (% - eixo primário) obtidos em 27 amostras de sedimentos superficiais coletados na área de influência do Porto de São Francisco de Sul em junho de 2023

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV: 3
FOLHA:

Figura 13. Tamanho médio de grão (phi – eixo secundário) e percentuais de matéria orgânica e carbonatos (% - eixo primário) obtidos em 27 amostras de sedimentos superficiais coletados na área de influência do Porto de São Francisco de Sul em setembro de 202327
Figura 14. Tamanho médio de grão (phi – eixo secundário) e percentuais de matéria orgânica e carbonatos (% - eixo primário) obtidos em 27 amostras de sedimentos superficiais coletados na área de influência do Porto de São Francisco de Sul em dezembro de 2023
Figura 15. Médias, máximos e mínimos tamanhos de grão (phi), separados por seção, sendo interno (estações #1 a #9), canal interno (estações #10 a #15), canal externo (estações #16 #17), descarte (estações #18 a #25) e estações de controle (baía e descarte), realizadas entre os anos de 2017 e 2023 na área de influência do Porto de São Francisco do Sul
Figura 16 Médias, máximos e mínimos percentuais de matéria orgânica (%), separados por seção, sendo interno (estações #1 a #9), canal interno (estações #10 a #15), canal externo (estações #16 #17), descarte (estações #18 a #25) e estações de controle (baía e descarte), realizadas entre os anos de 2017 e 2023 na área de influência do Porto de São Francisco do Sul
Figura 17. Médias, máximos e mínimos percentuais de carbonatos (%), separados por seção, sendo interno (estações #1 a #9), canal interno (estações #10 a #15), canal externo (estações #16 #17), descarte (estações #18 a #25) e estações de controle (baía e descarte), realizadas entre os anos de 2017 e 2023 na área de influência do Porto de São Francisco do Sul
Figura 18. Médias, máximos e mínimos de organismos bentônicos (eixo principal) e tamanho médio de grão (Phi – eixo secundário), separados por seção, sendo interno (estações #1 a #9), canal interno (estações #10 a #15), canal externo (estações #16 #17), descarte (estações #18 a #25) e estações de controle (baía e descarte), realizadas entre os anos de 2017 e 2023 na área de influência do Porto de São Francisco do Sul.
Figura 19. Regressão linear entre o número de organismos bentônicos capturados e tamanho médio de grão
Figura 20. Registros de precipitação anual (mm/12h) referentes a estação meteorológica situada em Itapoá-SC, disponibilizados para consulta pelo Instituto nacional de meteorologia (INMET)32
Figura 21. Concentrações de metais em 27 amostras de sedimentos superficiais coletados na área de influência do Porto de São Francisco de Sul entre abril de 2022 e dezembro de 2023

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV: **3**

FOLHA:

Figura 22. Concentrações de carbono orgânico total, nitrogênio kjeldahl, fósforo e de amônia em quatro campanhas realizadas entre abril de 2022 e dezembro de 2023 em 27 amostras de sedimentos superficiais coletados na área de influência do Porto de São Francisco de Sul
Figura 23 Valores de abundância de indivíduos (N) da macrofauna bentônica na região de influência do Porto de São Francisco do Sul46
Figura 24. Boxplot dos valores de mediana (Md), quartis de 25% e 75%, valores mínimos (Min) e máximos (Máx) dos descritores de A) riqueza de táxons (S); B) abundância de indivíduos (N); C) diversidade de Shannon-Wiener (H'); e D) equitabilidade de Pielou (J') para macrofauna de fundo inconsolidado na região de influência do Porto de São Francisco durante o período de monitoramento.
Figura 25 Boxplot dos valores ao longo de todo o monitoramento de mediana (Md), quartis de 25% e 75%, ao valores mínimos (Min) e máximos (Máx) dos descritores de A) riqueza de táxons (S); B) abundância de indivíduos (N); C) diversidade de Shannon-Wiener (H'); e D) equitabilidade de Pielou (J') para macrofauna de fundo inconsolidado na região de influência do Porto de São Francisco. PSFS, próximo às estruturas portuárias; CA, canal de acesso; BF, bota-fora; CTB, controle Babitonga; CTD, controle descarte.
Figura 26. Boxplot dos valores ao longo de todo monitoramento de mediana (Md), quartis de 25% e 75%, valores mínimos (Min) e máximos (Máx) dos descritores de A) riqueza de táxons (S); B) abundância de indivíduos (N); C) diversidade de Shannon-Wiener (H'); e D) equitabilidade de Pielou (J') para macrofauna de fundo inconsolidado
Figura 27. Projeção em espaço bidimensional da escala multidimensional (MDS) da macrofauna bentônica das campanhas realizadas ao longo de todo o monitoramento na região de influência do Porto de São Francisco do Sul utilizando a distância de Bray-Curtis. Coeficiente de estresse = 0,2. (●) PSFS, próximo às estruturas portuárias; (■) CA, canal de acesso; (◆) BF, bota-fora; (▲) CTB, controle Babitonga; (X) CTD, controle descarte
Figura 28. Amphipoda - organismo que apresentou maior contribuição para dissimilaridade entre os anos de monitoramento da região de influência do Porto de São Francisco do Sul
Figura 29. Área marinha de descarte de sedimentos (Bota-Fora Alfa)76
Figura 30. Profundidades da área de descarte Bota-Fora Alfa77

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

Figura 31. As áreas de dragagem do Canal externo, Canal interno e Darsena e Bacia de Evolução.79
Figura 32. Poligonal Dársena e Bacia de Evolução80
Figura 33. Levantamento Batimétrico da área de dragagem do Canal Interno81
Figura 34. Levantamento Batimétrico da área de dragagem do Canal Externo82
Figura 35. Seção esquemática representativa do projeto de dragagem do Canal Externo, Canal Interno, Dársena e Bacia de Evolução83
Figura 36. Região coberta pelas batimetrias realizadas85
Figura 37. Máscara de dragagem da Dársena e Bacia de Evolução87
Figura 38. Máscara de dragagem do Canal Interno 1/290
Figura 39. Máscara de dragagem do Canal Interno 2/290
Figura 40. Máscara de dragagem do Canal Externo 1/2101
Figura 41. Máscara de dragagem do Canal Externo 2/2101
Figura 42. Ilustração esquemática de uma draga de sucção por arrasto do tipo autotransportadora (TSHD), com representação das partes mais relevantes à dragagem
Figura 43. Ciclo de produção de uma draga autotransportadora de sucção - TSHD120
Figura 44. Diagrama esquemático da atividade de descarte de material dragado via abertura das portas da cisterna no fundo do casco da draga autotransportadora. Fonte, Jan de Nul120
Figura 45. Diagrama esquemático do processo de descarte do material dragado por meio da conexão de uma linha de recalque no sistema de lançamento da draga autotransportadora e descarte em área terrestre
Figura 46. Ilustração esquemática do uso da válvula verde no sistema de overflow. A esquerda situação
sem o uso da válvula. A direita situação com o uso da válvula verde126

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

REV:		
	3	
FOLHA:		
	9/132	

LISTA DE TABELAS

Tabela 1. NÚMERO DE AMOSTRAS PONTUAIS PARA A CARACTERIZAÇÃO DE SEDIMENTOS.
Tabela 2. Coordenadas dos pontos amostrais utilizados para o desenvolvimento do Programa de Monitoramento do Sedimento
Tabela 3. Cronograma dos monitoramentos realizados para o Programa de Qualidade dos Sedimentos (2017 a 2023)
Tabela 4. Médias de concentrações de metais separados por seção, sendo interno (estações #1 a #9), canal interno (estações #10 a #15), canal externo (estações #16 #17), descarte (estações #18 a #25) e estações de controle (baía e descarte), realizadas entre os anos de 2017 e 2023 na área de influência do Porto de São Francisco do Sul e concentrações de metais obtidas em Demori (2008) para a Baía da Babitonga
Tabela 5 Abundância total e contribuição relativa (%) dos táxons para as campanhas de coleta da macrofauna bentônica de fundo inconsolidado da região de influência do Porto de São Francisco – SC. Cont% = Porcentagem de contribuição do táxon em relação a fauna total identificada42
Tabela 6. Valores de H teste de Kruskal-Wallis e p para os descritores de riqueza de taxa (S), abundância de indivíduos (N), equitabilidade de Pielou (J') e diversidade de Shannon-Wiener (H') considerado os fatores campanha e zona. Os valores em vermelho representam os descritores que apresentaram diferenças significativas para o fator avaliado (p<0,05)
Tabela 7. Resultados da análise SIMPER. Dissimilaridade média (Diss. Méd.), contribuição (Cont.%), contribuição acumulada (Acum%) e abundância média (N) dos principais táxons/morfotipos que contribuíram para a diferenciação entre as zonas avaliadas na região de influência do Porto de São Francisco do Sul ao longo de todo o monitoramento.
Tabela 8. Resultados dos testes toxicológicos crônicos para ouriço-do-mar das amostras sedimentológicas coletadas na área de influência do Porto de São Francisco do Sul entre fevereiro de 2017 e dezembro de 2023

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

FOLHA:

10/132

3

Tabela 9 Concentração de amônia não ionizada (NH ₃) e efeito observado nos testes de toxicidade crônica com amostras de sedimento entre fevereiro de 2017 e dezembro de 2023, classificação em função da presença de amônia no elutriato
Tabela 10 Efeito observado nos testes de toxicidade crônica com amostras de sedimento, entre fevereiro de 2017 e dezembro de 2023, granulometria, % de matéria orgânica e % carbonato de cálcio.
Tabela 11. Integração dos dados de qualidade dos sedimentos através de tabelas de decisão para as amostras coletadas em fevereiro e agosto de 2017 e setembro de 2018 na área de influência do Porto de São Francisco do Sul/SC. A legenda apresenta as três formas de observação de alterações na qualidade dos sedimentos: inexistente (verde), moderado (azul) e forte (amarelo)
Tabela 12. Integração dos dados de qualidade dos sedimentos através de tabelas de decisão para as amostras coletadas em março e setembro de 2019 e março de 2020 na área de influência do Porto de São Francisco do Sul/SC
Tabela 13 Integração dos dados de qualidade dos sedimentos através de tabelas de decisão para as amostras coletadas em setembro de 2020, setembro de 2021 e setembro de 2022 na área de influência do Porto de São Francisco do Sul/SC
Tabela 14 Integração dos dados de qualidade dos sedimentos através de tabelas de decisão para as amostras coletadas em março de 2023 na área de influência do Porto de São Francisco do Sul/SC.
Tabela 15. Localização dos vértices do Bota-fora76
Tabela 16. Resumo dos critérios adotados para a dragagem de manutenção do Canal Externo, Canal Interno, Dársena e Bacia de Evolução82
Tabela 17. Valores obtidos por seção de dragagem para a Dársena e Bacia de Evolução87
Tabela 18. Valores obtidos por seção de dragagem para a Canal Interno91
Tabela 19. Valores obtidos por seção de dragagem para o Canal Externo102
Tabela 20. Resumo dos Volumes para dragagem117
Tabela 21. Dados utilizados nas estimativas de prazos de execução127

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

FOLHA:

Tabela 22. Prazos de execução da Dragagem da Dársena e Bacia de evolução	127
Tabela 23. Prazos de execução do Canal Interno	128
Tabela 24. Prazos de execução da Dragagem do Canal Externo	128
Tabela 25. Cronograma proposto para a dragagem da Dársena e Bacia De Evolução, Car Canal Externo do terminal do Porto de São Francisco do Sul	
Tabela 26. Coordenadas dos vértices da área de dragagem, delimitada pelo sistema proposto. Datum horizontal SIRGAS-2000, Zona UTM 22J, hemisfério sul	•
Tabela 27. Volume a serem removidos	131
Tabela 28. Coordenadas do Bota-fora. Datum horizontal SIRGAS-2000, Zona UTM 22S	

NÚMERO INFRAS: IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:		
	3	
FOLHA:		
	12/132	

1. DOCUMENTOS DE REFERÊNCIA

Os seguintes documentos foram utilizados como referência para esta plano de dragagem:

[1]	Xyz_Bacia_r6_27e31-03- 2024_Shoal	BATIMETRIA BACIA DE EVOLUÇÃO
[2]	Xyz_Cl_r15_27-03-04-2024_Shoal	BATIMETRIA CANAL INTERNO
[3]	Xyz_CE_r15_27e28-03- 2024_Shoal	BATIMETRIA CANAL EXTERNO
[4]	Xyz_Darsena_r3_27e31-03_e04- 04-2024_Shoal	BATIMETRIA DÁRSENA
[5]	Xyz_1035-23_17-12-2023_Cat- B_Despejo_r15.xyz	13_Rel.HD_1035-1-DESP
[6]	IFS-2412-220-D-DE-10001_R0 a IFS-2412-220-D-DE-30131_R0	PROJETO BÁSICO PORTO DE SÃO FRANCISCO DO SUL – PROJETO DE DRAGAGEM
[7]	PSFS_ANUAL_SEDIMENTOS_201 7_2023_FINALrev06	CARACTERIZAÇÃO DOS SEDIMENTOS A SEREM DRAGADOS
[8]	canal_SFS_atual_2024.dwg	GEOMETRIA DA ÁREA A SER DRAGADA

2. INTRODUÇÃO

Este documento é o Plano de Dragagem destinado à manutenção das profundidades do Canal de Acesso, Dársena e Bacia de Evolução do Porto de São Francisco do Sul, até a cota de -14,0 m DHN.

DRAGAGEM DE MANUTENÇÃO

RELATÓRIO DE DRAGAGEM

SCPAR - PORTO DE SÃO FRANCISCO DO SUL

PROJETO BÁSICO

NÚMERO INFRAS:

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

-

INFRAS ENGENHARIA

REV:

3

FOLHA:

13/132

Figura 1. Localização de São Francisco do Sul - SC

Fonte: Google

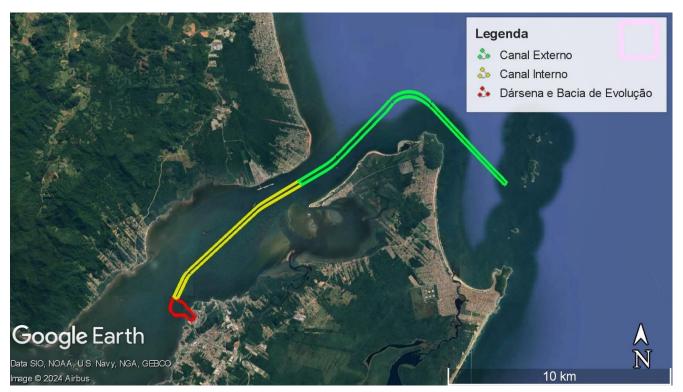


Figura 2. Localização do Terminal.

Fonte: Google Earth

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:

FOLHA:

14/132

3

Os levantamentos batimétricos utilizados nos cálculos do volume de dragagem foram realizados entre os dias 27 de março e 4 de abril de 2024, cobrindo toda a extensão do atual traçado do sistema aquaviário do Porto de São Francisco do Sul.

Ao longo deste documento serão apresentadas as principais informações e características a respeito do projeto de dragagem, definidas pelo Plano Básico Ambiental – PBA do Porto de São Francisco do Sul, que deverão ser implementadas ao longo das atividades propostas.

3. REQUISITOS GERAIS

3.1. SISTEMA DE UNIDADES

Será adotado o Sistema Internacional de Unidades (SI), exceto quando a tradição de uso e/ou disponibilidade de mercado tenha consagrado o uso de outras unidades.

3.2. REFERÊNCIAS PLANIALTIMÉTRICAS

Os dados planialtimétricos estão referenciados pelo Sistema de Coordenadas Planas UTM, sendo que o *datum* horizontal utilizado é o WGS-1984, quadrante 22S. O *Datum* vertical é o zero hidrográfico da DHN.

4. CARACTERIZAÇÃO DE SEDIMENTOS

O presente capítulo tomou por base o documento de referência [7], que corresponde ao relatório anual do programa de monitoramento dos sedimentos do Porto de São Francisco do Sul.

O monitoramento da qualidade dos sedimentos na área de influência das atividades de operação do Porto de São Francisco do Sul (SC) acontece trimestralmente desde 2017, em vinte e sete pontos amostrais na baía da Babitonga. O ciclo de monitoramento se deu através de vinte e uma campanhas amostrais realizadas entre fevereiro de 2017 e dezembro de 2023.

As dragagens de manutenção na área de influência do Porto de São Francisco do Sul foram realizadas entre janeiro e julho de 2017; e entre janeiro, março, abril, junho e julho de 2021. Entre setembro de 2018 e agosto de 2019, em 2020, 2022, 2023 e 2024, até a data de elaboração do presente relatório,

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV: **3**

FOLHA:

15/132

não houve obras de dragagem de manutenção. Não há relatos de acidentes ambientais no entorno do PSFS durante o período de monitoramento.

A caracterização dos sedimentos a serem dragados foi realizada seguindo as orientações da Resolução CONAMA Nº 454/2012, e objetivou avaliar a sua qualidade ambiental, de acordo com os limites estabelecidos pela referida norma ambiental. O número de amostras de sedimento a serem analisadas deve atender ao disposto na Tabela I do Anexo da Resolução CONAMA Nº 454/2012, conforme a Tabela 1 a seguir.

Tabela 1. NÚMERO DE AMOSTRAS PONTUAIS PARA A CARACTERIZAÇÃO DE SEDIMENTOS.

NÚMERO DE AMOSTRAS PONTUAIS PARA A CARACTERIZAÇÃO DE SEDIMENTOS			
Volume a ser dragado (m³)	Número de Amostras		
Até 25.000	3		
Entre 25.000 e 100.000	4 a 6		
Entre 100.000 e 500.000	7 a 15		
Entre 500.000 e 2.000.000	16 a 30		
Acima de 2.000.000	10 extras por 1 milhão de m³		

4.1. METODOLOGIA

A seguir, apresenta-se a metodologia aplicada no Programa de Monitoramento dos Sedimentos, que abrange os seguintes subitens: cronograma de campanhas e parâmetros monitorados, pontos amostrais, coleta das amostras, análises laboratoriais (caracterização física e química, macrofauna bentônica de fundo inconsolidado e ecotoxicidade) e integração de resultados.

4.1.1. PONTOS AMOSTRAIS

Conforme estabelecido, pelos Termos de Referência do Pregão Eletrônico nº 0054/2021, são monitorados 27 (vinte e sete) pontos amostrais, dos quais vinte e cinco (25) são representativos do sistema aquaviário de acesso ao porto e bota-fora; e, dois (02) definidos como controles da área interna e área de descarte, conforme pode ser visto na Figura 3. Desta forma, os pontos amostrais abrangem todo o sistema aquaviário do Porto de São Francisco, além do bota-fora utilizado nas atividades de

dragagem. Esta malha amostral é considerada fixa e permanece na mesma posição em todas as sucessivas etapas de amostragem.

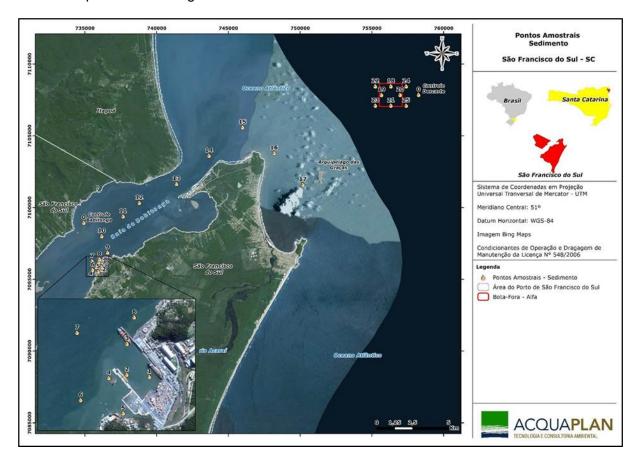


Figura 3. Localização dos pontos amostrais do Programa de Monitoramento do Sedimento na região de influência do Porto de São Francisco do Sul.

Esses pontos amostrais são distribuídos próximos às estruturas portuárias (#PSFS), no canal de acesso (#CA), no bota-fora (#BF) e em dois pontos controle (#CTB – Controle Babitonga e #CTD – Controle Descarte), localizados dentro e fora da baía respectivamente, conforme a Tabela 2 a seguir.

Tabela 2. Coordenadas dos pontos amostrais utilizados para o desenvolvimento do Programa de Monitoramento do Sedimento.

Pontos amostrais	Dantum WGS 84 - Zona 22J		Descrisão
Pontos amostrais	UTM E (m)	UTM N (m)	Descrição
PSFS #01	736155	7095900	Próximos às
PSFS #02	735951	7095920	estruturas

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV: **3**

FOLHA:

17/132

735953	7096200	portuárias do Porto de São
735788	7095890	Francisco do
735919	7095570	Sul
735533	7095690	
735501	7096300	
736018	7096440	
736578	7096900	
736175	7098050	
737665	7099430	
738789	7100370	
741382	7101690	Canal de
743651	7103650	Acesso
745986	7105630	
748188	7103830	
750198	7101620	
756324	7108486	
755679	7107891	
756973	7107891	
756324	7107145	Doto foro
755242	7108486	Bota-fora
755242	7107145	
757394	7108486	
757394	7107145	
734920	7098980	Controle
758257	7107900	Controle
	735788 735788 735919 735533 735501 736018 736578 736175 737665 738789 741382 743651 745986 748188 750198 756324 755679 756973 756324 755242 755242 757394 757394 734920	735788 7095890 735919 7095570 735533 7095690 735501 7096300 736018 7096440 736578 7096900 736175 7098050 737665 7099430 738789 7100370 741382 7101690 745986 7105630 748188 7103830 750198 7101620 756324 7108486 755679 7107891 756324 7108486 755242 7107145 755242 7108486 757394 7108486 757394 7107145 734920 7098980

4.1.2. COLETA DAS AMOSTRAS

As coletas dos sedimentos, são realizadas com um busca-fundo do tipo *van Veen* (Figura 4 e Figura 5), confeccionado em aço inoxidável com capacidade de 4,5 L. Esta metodologia consiste em operar um guincho para baixar a draga em direção ao fundo (Figura 4A). Quando a draga chega ao fundo, a garra abre e o material é coletado (Figura 4B e Figura 4C). Em seguida, ela se fecha e leva uma amostra da camada superior do sedimento (Figura 4D).

Em cada ponto amostral, é coletada uma amostra de sedimentos superficiais destinada à análise granulométrica, aos parâmetros químicos e ecotoxicologia. Como as análises de metais pesados nos

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS SON SEN HARIA

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

REV:
3
FOLHA:

18/132

sedimentos requerem cuidados especiais de amostragem, são retiradas sub amostras que não tiveram contato com a parte metálica do equipamento, a fim de evitar possível contaminação dessas quando da determinação da concentração dos elementos metálicos.

As amostras de sedimento coletadas são devidamente acondicionadas de acordo com o parâmetro a ser analisado, levando em consideração os padrões definidos pela Resolução CONAMA Nº 454/2012. Ao final das atividades de coleta do material sedimentar, as amostras são encaminhadas à empresa Freitag Laboratórios. A análise de alguns parâmetros físico-químicos, como oxigênio dissolvido, pH, temperatura da água, salinidade, turbidez e transparência, são realizadas *in loco*, utilizando a sonda multiparâmetros *Horiba W-22*.

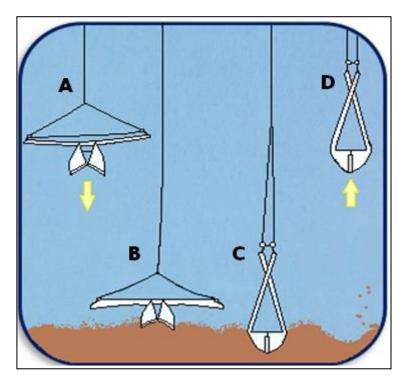


Figura 4. Esquema de funcionamento do pegador de fundo do tipo Van Veen para coleta de macrofauna. Fonte: http://www.esgemar.com

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV: 3 FOLHA: 19/132

Figura 5. Draga tipo van Veen utilizada para coleta de sedimentos superficiais.

Com o objetivo de estabelecer um padrão confiável para a análise da macrofauna bêntica, todas as amostras são tomadas em triplicata, utilizando uma draga busca fundo do tipo *van Veen*, perfazendo uma área amostral de 0,022 m² (12 cm x 23 cm). As coletas são realizadas em 27 pontos (triplicata), totalizando 81 amostras por campanha. Posteriormente, o material coletado é acondicionado em sacos tela, devidamente identificados quanto à estação amostral. Estas amostras são fixadas em solução de formalina a 4% e armazenadas em bombonas plásticas para envio ao laboratório, conforme pode ser visto na Figura 6.

Figura 6. Draga tipo van Veen utilizada para coleta de macrofauna bentônica de fundo inconsolidado.

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

REV:			
	3		
FOLHA:			

20/132

4.1.3. CRONOGRAMA DAS CAMPANHAS E PARÂMETROS MONITORADOS

Este programa ambiental engloba o monitoramento trimestral e semestral de diferentes parâmetros. Nesse sentido, para melhor entendimento do leitor, o cronograma de campanhas amostrais é classificado em grupos, a saber:

- Grupo 1: Frequência trimestral a granulometria, percentuais de matéria orgânica ede carbonatos e decarbono orgânico total, além das concentrações de nitrogênio Kjeldahl total e fósforo total em mg/kg;
- Grupo 2: Frequência trimestral estrutura da comunidade bentônica de fundo inconsolidado, sendo que cada estação amostral é analisada em forma de triplicata;
- Grupo 3: Frequência semestral todos os parâmetros da Resolução CONAMA Nº 454/2012; e,
- Grupo 4: Frequência semestral ensaios ecotoxicológicos, utilizando como organismo teste o ouriço-do-mar através da metodologia analítica ABNT NBR 15350:2021.

Tabela 3. Cronograma dos monitoramentos realizados para o Programa de Qualidade dos Sedimentos (2017 a 2023).

Ano	Datas	Grupo 1 (Física e Química - Granulometria, MO,Carbonatos, COT,Nitrogênio Kjeldahl Total, Fósforo Total)	Grupo 2 (Macrofauna Bentônica de Fundo Inconsolidado)	Grupo 3 (Química - Resolução CONAMA 454/12)	Grupo 4 (Ecotoxicidade)
	Fevereiro	X	X	X	Х
	Maio	X	X		Х
2017	Agosto	X	X	X	Х
	Novembro	X	X	X	
	Setembro	Х	Х	X	Х
2018	Dezembro	X	Х		
	Março	Х	Х	Х	Х
	Junho	X	X		
2019	Setembro	X	X	X	Х
	Dezembro	X	Х		
	Março	Х	Х	X	Х
	Junho	X	X		
2020	Setembro	X	X	X	Х
	Dezembro	X	Х		

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV: **3**

FOLHA:

21/132

Ano	Datas	Grupo 1 (Física e Química - Granulometria, MO,Carbonatos, COT,Nitrogênio Kjeldahl Total, Fósforo Total)	Grupo 2 (Macrofauna Bentônica de Fundo Inconsolidado)	Grupo 3 (Química - Resolução CONAMA 454/12)	Grupo 4 (Ecotoxicidade)
2021	Março	X	X	X	
	Junho	X	X		
	Setembro	X	X	X	X
2022	Março	X	X	X	
	Junho	X	X		X
	Setembro	X	X	Х	X
	Dezembro	X	Х		
2023	Março	Х	Х	Х	X
	Junho	X	Х		
	Setembro	X	X	X	
	Dezembro	X	X		Х

4.2. RESULTADOS E DISCUSSÕES

4.2.1. CARACTERIZAÇÃO GRANULOMÉTRICA

A seguir são apresentados os resultados obtidos nas últimas campanhas trimestrais realizadas (março, junho, setembro e dezembro de 2023) para avaliação dos parâmetros granulométricos. Posteriormente, os resultados são apresentados e analisados com períodos anteriores, buscando compreender como os parâmetros granulométricos se comportam, quais as tendências e como eles se relacionam aos demais parâmetros ambientais no tempo e no espaço.

Na campanha realizada em março de 2023 as estações amostrais situadas nas proximidades das instalações do Porto e em parte das estações amostrais do canal interno (#1 a #13 e #ct baía), os sedimentos superficiais apresentaram percentuais sedimentos finos (silte e argila) variando entre 35,1% e 50,85% do total das amostras, conforme a Figura 7. Nestas estações amostrais os sedimentos arenosos estiveram principalmente representados pelas classes de areia fina e de areia muito fina..

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV: **3**FOLHA:

22/132

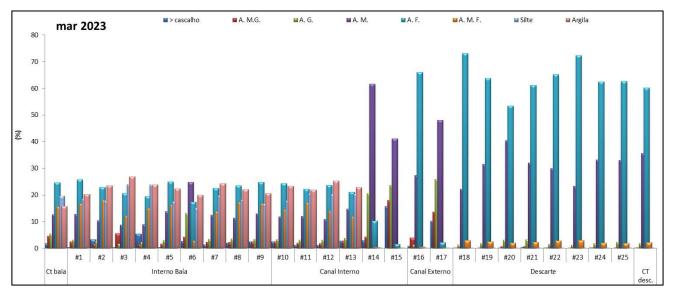


Figura 7. Distribuição das frações granulométricas de 27 amostras de sedimentos superficiais coletados na área de influência do Porto de São Francisco em março de 2023.

As estações amostrais #14 e #15, situadas no canal interno, junto com a estação amostral do canal externo (#17), foram predominantemente representadas pela fração de areia média, acompanhada de areia grossa e de areia fina. Na estação amostral#16 e nos pontos situados na região de descarte (#18 a #25 e #Ct descarte) os sedimentos foram predominantemente compostos pelas classes areia fina e de areia média (Figura 7).

Na campanha realizada em junho de 2023 as estações amostrais situadas próximas às instalações do Porto e no interior da Baía (#1 a #13) apresentaram sedimentos com uma distribuição granulométrica heterogênea. Além da grande representatividade de sedimentos finos (silte e argila), os sedimentos apresentaram percentuais representativos de todas as classes granulométricas de areias, com destaque para areia fina e areia muito fina, conforme pode ser visto na Figura 8. Nestas estações amostrais, somente as estações amostrais #1 e #6 apresentaram a predominância de sedimentos finos. Nas estações amostrais #14 a #17 os sedimentos superficiais apresentaram maior tamanho de grão, com maiores percentuais associados com a fração areia grossa e superiores. Em todas as estações amostrais situadas na região do bota fora marinho (#18 a #25 e #Ct descarte) observou-se padrão granulométrico bimodal composto de areia fina, seguido ede areia média (Figura 8)., como o observado na campanha anterior Figura 7

DRAGAGEM DE MANUTENÇÃO

RELATÓRIO DE DRAGAGEM

SCPAR - PORTO DE SÃO FRANCISCO DO SUL

PROJETO BÁSICO

NÚMERO INFRAS:

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS SENERALIA

REV:

3

FOLHA:

23/132

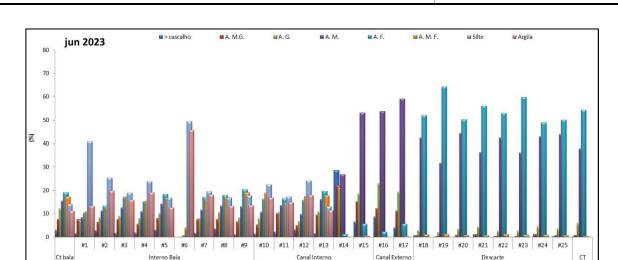


Figura 8. Distribuição das frações granulométricas de 27 amostras de sedimentos superficiais coletados na área de influência do porto de São Francisco do Sul.

Nacampanha realizada em setembro de 2023 as estações amostrais situadas na porção interna da Baía de #1 a #4 e o pontos#8 e #13, apresentaram maiores percentuais de sedimentos finos, superando 86% do total das amostras. As estações amostrais #5 e#6 estiveram compostas principalmente pelas frações silte, argila e areia fina. Os pontos de coleta #ct baía, #7, #11 e #12 apresentaram percentuais expressivos de sedimentos tamanho areia fina, acompanhados de areia média, areia muito fina e silte e argila com menores percentuais. Nas estações amostrais do canal de externo (#14 a #17), houve um predomínio a areia média, seguido das classes de areia grossa e areia muito grossa. Na área de descarte também foi registrada maior proporção da classe de areia fina, seguida de areia grossa e areia fina. (Figura 9).

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

__

INFRAS ENGENHARIA

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3
FOLHA:

24/132

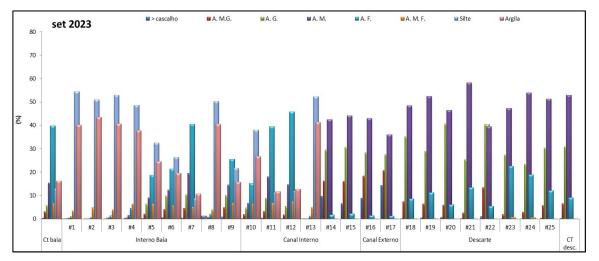
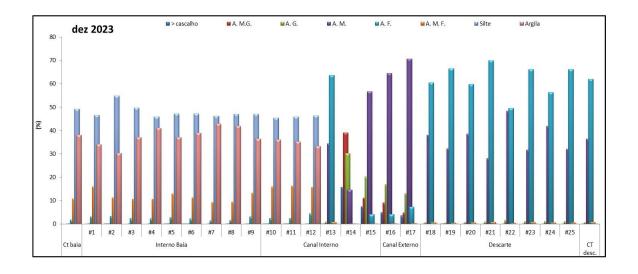



Figura 9. Distribuição das frações granulométricas de 27 amostras de sedimentos superficiais coletados na área de influência do porto de São Francisco do Sul.

Na campanha realizada em dezembro de 2023 notou-se a distribuição granulométrica com maior frequência de sedimentos finos (silte e argila), acompanhados de areia muito fina em percentuais inferiores a 20% nas estações amostrais situadas na porção interna da Baía (#1 a #12 e estação de controle da Baía).. Nas estações #15, #16 e #17 areia média apareceu em porcentagem superior a 50% associada principalmente a frações de maior tamanho. As amostras coletadas nos pontos #13 e #18 a 23 e #Ct baía apresentaram padrão bimodal representado pelas classes areia fina e areia média (Figura 10).

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:

3
FOLHA:

25/132

Figura 10. Distribuição das frações granulométricas de 27 amostras de sedimentos superficiais coletados na área de influência do porto de São Francisco do Sul.

Considerando um ciclo anual de campanhas na área de influência do Porto de São Francisco do Sul, é possível notar que nas estações amostrais situadas no canal de acesso e na plataforma continental a textura dos sedimentos sofre poucas variações sazonais. As estações amostrais ao entorno da área portuária, no interior da baía da Babitonga apresentam maiores variações sazonais com um incremento de sedimentos finos no período de primavera e predominância de finos no verão. No período de outono este sedimento fino é remobilizado chegando aos menores percentuais no período de inverno, quando a hidrodinâmica do local aumenta devido às condições climáticas mais severas, como o aumento de entradas de frentes frias, tempestades e ressacas

As Figura 11 a Figura 14 a seguir representam os percentuais de matéria orgânica e de carbonatos obtidos entre março e dezembro de 2023, junto as suas respectivas médias de tamanho de grão (phi). De forma a auxiliar na interpretação do gráfico, cabe ressaltar, que quanto maior o valor de phi, menor o tamanho da partícula. Nesse sentido, é possível observar a relação inversa dos percentuais de matéria orgânica com o tamanho de grão, isto é, nas estações amostrais onde foram registrados sedimentos de menor tamanho de grão, os percentuais de matéria orgânica foram mais elevados. As porcentagens de matéria orgânica seguem o mesmo padrão sazonal observado para granulometria, sendo os mais altos teores registrados nos períodos de verão e primavera e os mais baixos registrados nas estações de inverno e outono.

Os percentuais de carbonatos foram expressivos em sedimentos finos, mas também apresentam relação diretamente proporcional com os sedimentos de maior tamanho de grão, impulsionados pela presença de fragmentos de conchas presentes no substrato, principalmente observados nas estações amostrais no canal de acesso.

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

__

INFRAS ENGENHARIA

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM TEV:

3

FOLHA:

26/132

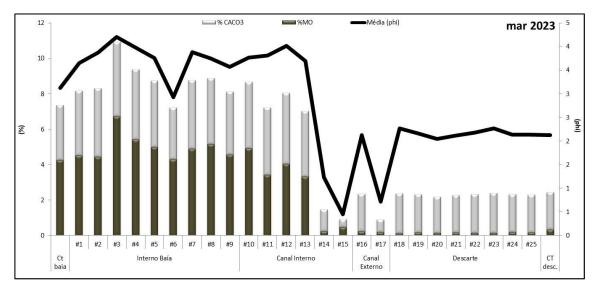


Figura 11. Tamanho médio de grão (phi – eixo secundário) e percentuais de matéria orgânica e carbonatos (% - eixo primário) obtidos em 27 amostras de sedimentos superficiais coletados na área de influência do Porto de São Francisco de Sul em março de 2023.

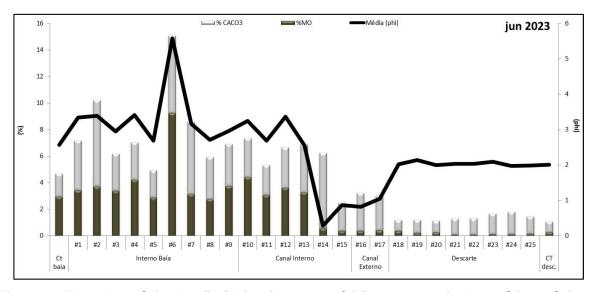


Figura 12. Tamanho médio de grão (phi – eixo secundário) e percentuais de matéria orgânica e carbonatos (% - eixo primário) obtidos em 27 amostras de sedimentos superficiais coletados na área de influência do Porto de São Francisco de Sul em junho de 2023.

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

ENGENHARIA

NFRASENG.COM

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR - PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

REV: 3 FOLHA:

27/132

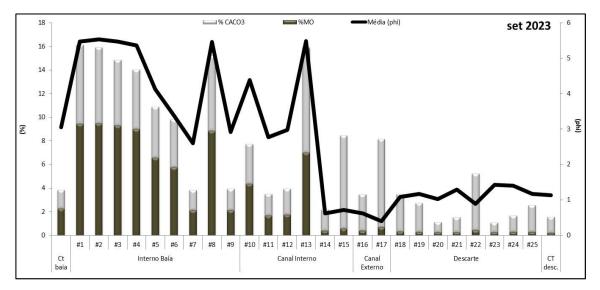


Figura 13. Tamanho médio de grão (phi - eixo secundário) e percentuais de matéria orgânica e carbonatos (% - eixo primário) obtidos em 27 amostras de sedimentos superficiais coletados na área de influência do Porto de São Francisco de Sul em setembro de 2023.

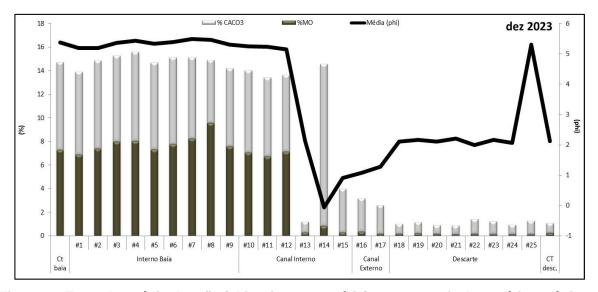


Figura 14. Tamanho médio de grão (phi - eixo secundário) e percentuais de matéria orgânica e carbonatos (% - eixo primário) obtidos em 27 amostras de sedimentos superficiais coletados na área de influência do Porto de São Francisco de Sul em dezembro de 2023.

Considerando o histórico deste programa de monitoramento, nas vinte e uma campanhas amostrais realizadas entre os anos de 2017 e 2023, conforme a Figura 15 a Figura 18, foram observados sedimentos com maiores percentuais de silte e argila na área frontal às instalações portuárias (dársena), onde a conformação estrutural e localização estratégica, atuam na proteção deste local, e

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:		
	3	
FOLHA:		

28/132

consequentemente a hidrodinâmica é reduzida (estações amostrais #1 a #5), permitindo a deposição de sedimentos finos. Associados a presença de silte e argila, os percentuais de matéria orgânica e carbonatos nestas estações amostrais são superiores aos observados nas demais amostras.

Nas estações amostrais #6, #7 e #8, no entorno da área portuária, e na estação de controle da baía (#CB), os sedimentos arenosos passam a ser mais representativos, em virtude da maior exposição à hidrodinâmica do local. Nestas estações amostrais, os sedimentos finos apresentam menores percentuais de carbonatos e de matéria orgânica em comparação com a primeira seção, mas elevados em relação às estações amostrais presentes no canal externo e na plataforma continental.

O mesmo padrão é observado nas estações amostrais do canal interno, sendo que à medida que se aproximam do oceano observa-se um aumento das classes granulométricas, até chegar à estação amostral #15, localizada na desembocadura da baía. Ali o estrangulamento do canal ocasiona em um aumento das correntes, consequentemente, o material fino é transportado e os sedimentos mais grosseiros como a areia média e a areia grossa são predominantes. Em estudos pretéritos, foi observado que as correntes nesta região são principalmente dominadas por marés, com registros de até 1,5 m/s em maré vazante de sizígia (CPE, 2008; ACQUAPLAN, 2007). Essa condição somada a influência do aporte continental, onde a vazão dos principais afluentes varia entre 0,4 e 14,95 m³/s, torna a desembocadura da baía o local de maior velocidade de corrente da área de estudo (ACQUAPLAN, 2019). Nestas estações amostrais também é possível notar que parte da fração granulométrica grosseira é composta por fragmentos de conchas, evidenciada pelos maiores percentuais de carbonatos.

As estações #16 e #17, situadas no canal externo, assim como as estações presentes na área de descarte (#18 a #25 e #ct descarte), apresentaram poucas variações de tamanho de grão ao longo dos anos de coleta, com a predominância de areia fina.

Em geral o número total de organismos bentônicos coletados nas campanhas realizadas entre os anos de 2017 e 2023, não apresentou relação com os tamanhos médios de grão registrados. Somente em algumas campanhas e setores houve uma tendência de aumento do número de indivíduos com o

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR - PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

		-
REV:		
	3	
FOLHA:		
	29/132	

aumento do tamanho médio de grão, segundo a Figura 18 a seguir, porém sem um padrão bem definido.

Os dados obtidos para a granulometria confrontados com o total de organismos bentônicos capturados, não apresentaram relação de proporcionalidade conforme a Figura 19 a seguir, evidenciado pelo coeficiente de determinação (R² = 0,0696), extremamente baixo.

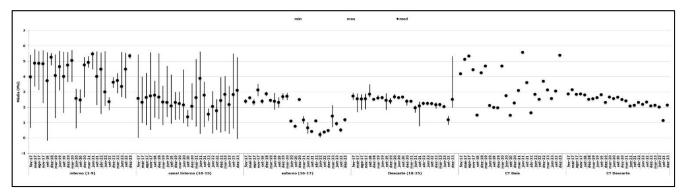


Figura 15. Médias, máximos e mínimos tamanhos de grão (phi), separados por seção, sendo interno (estações #1 a #9), canal interno (estações #10 a #15), canal externo (estações #16 #17), descarte (estações #18 a #25) e estações de controle (baía e descarte), realizadas entre os anos de 2017 e 2023 na área de influência do Porto de São Francisco do Sul.

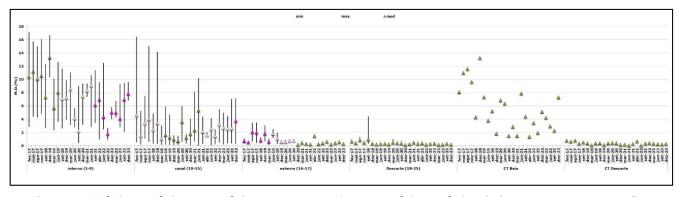


Figura 16 Médias, máximos e mínimos percentuais de matéria orgânica (%), separados por seção, sendo interno (estações #1 a #9), canal interno (estações #10 a #15), canal externo (estações #16 #17), descarte (estações #18 a #25) e estações de controle (baía e descarte), realizadas entre os anos de 2017 e 2023 na área de influência do Porto de São Francisco do Sul.

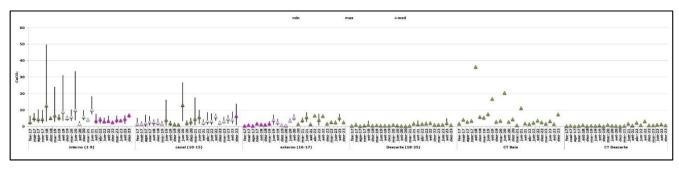


Figura 17. Médias, máximos e mínimos percentuais de carbonatos (%), separados por seção, sendo interno (estações #1 a #9), canal interno (estações #10 a #15), canal externo (estações #16 #17), descarte (estações #18 a #25) e estações de controle (baía e descarte), realizadas entre os anos de 2017 e 2023 na área de influência do Porto de São Francisco do Sul.

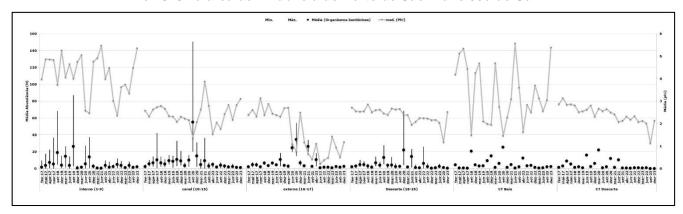


Figura 18. Médias, máximos e mínimos de organismos bentônicos (eixo principal) e tamanho médio de grão (Phi – eixo secundário), separados por seção, sendo interno (estações #1 a #9), canal interno (estações #10 a #15), canal externo (estações #16 #17), descarte (estações #18 a #25) e estações de controle (baía e descarte), realizadas entre os anos de 2017 e 2023 na área de influência do Porto de São Francisco do Sul.

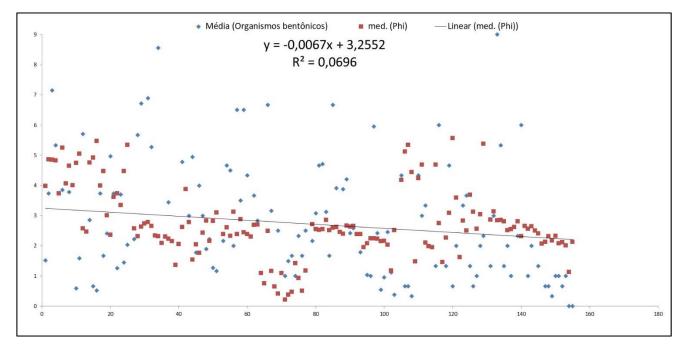


Figura 19. Regressão linear entre o número de organismos bentônicos capturados e tamanho médio de grão

Na Figura 20 são apresentados os dados de precipitação anual disponíveis para consulta pública (INMET) referentes à estação meteorológica situada em Itapoá, fonte de dados mais próxima a área de estudo. Considerando os meses de coletas ao longo dos anos de monitoramento, em relação a esta variável ambiental isolada, é possível observar que o transporte de sedimentos nos pontos localizados próximos às instalações portuárias, assim como nos pontos situados no canal de acesso, não é exclusivamente regido pela precipitação, porém nos períodos mais chuvosos há uma tendência de aumento do tamanho médio de grão, com observado no primeiro semestre de 2023.

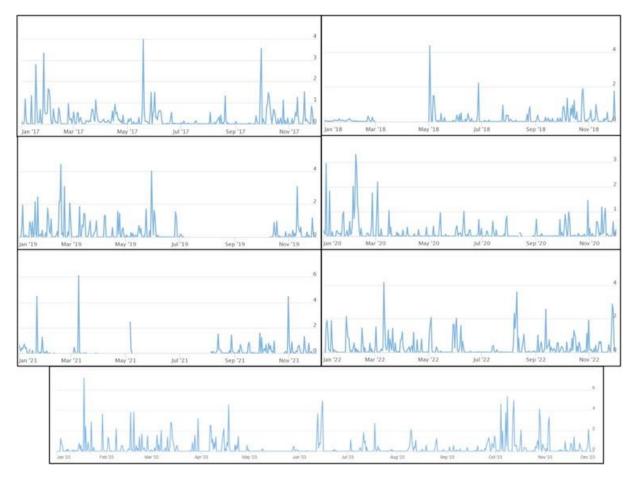


Figura 20. Registros de precipitação anual (mm/12h) referentes a estação meteorológica situada em Itapoá-SC, disponibilizados para consulta pelo Instituto nacional de meteorologia (INMET).

O transporte de sedimentos em regiões estuarinas pode ser determinado por uma série de variáveis, o que torna o entendimento destes ambientes de altíssima complexidade. No caso do Rio Cubatão, principal aporte ao norte da baía, Schettini & Carvalho (1999) identificaram a exportação de sedimentos para o interior da Baía, proporcional ao regime pluvial, porém no período de estudos concluíram que o principal regulador de qualidade do sistema são as marés, que apresenta um padrão misto, com predominância semi-diurna, mas com desigualdades de altura entre ciclos de marés consecutivos, variando entre 0,5 e 1,2 m em sizígia.

Nas campanhas onde houve registros de maior tamanho médio de grão, como em junho e setembro de 2020, não houve precipitações expressivas, podendo-se concluir que estes registros são reflexo da influência marinha. Com exceção dos verões menos chuvosos de 2018 (quando não houve coleta) e

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:		
	3	
FOLHA:		

33/132

de 2021, este período de verão caracteriza-se pela ocorrência de precipitações mais frequentes e por consequência, as amostras coletadas nesta estação apresentam maiores médias de tamanho de grão nos pontos mais internos da baía quando comparadas aos períodos de menor precipitação.

Em estudos pretéritos, Vieira, et al. (2008) caracterizou o estuário da baía da Babitonga em três setores, o primeiro de alta hidrodinâmica e influência marinha, com sedimentos arenosos (92,54 %), teor médio de 16,86 % de carbonatos e de 1,27% de matéria orgânica. Neste monitoramento padrões similares foram observados nas estações amostrais situadas na área de descarte e no canal externo.

O segundo grupo observado pelo autor foi composto por sedimentos arenosos mais finos, comportando-se como uma zona de transição entre os demais grupos sedimentologicamente distintos, com teor médio de matéria orgânica de 2,67% de 12,02% de carbonatos, similares às estações amostrais situadas no canal interno. Porém, em algumas destas estações amostrais e campanhas houve também uma tendência textural semelhante ao próximo grupo classificado.

O terceiro grupo foi composto pelos sedimentos finos, com média de 75,62 % de silte mais argila, percentual médio de 5,53 % de matéria orgânica e 12,36% de carbonatos, similares às estações amostrais classificadas como "interno", próximas as instalações portuárias. Os valores médios e desvio padrão obtidos neste estudo são similares aos registros obtidos no PBA, dentro de cada setor categorizado.

Em relatório descritivo (2018) contendo modelagens hidrodinâmica e euleriana na baía da Babitonga, as simulações indicam que a renovação da água no interior da baía desprezando a ação de ondas no complexo, considerando o rio Palmital e as lagoas do Varador e Saguaçú são atribuídas aos afluentes (precipitação), já na região central até a sua desembocadura são atribuídas ao mar (marés). As estimativas de idade obtidas foram na ordem de 10 a 12.5 dias na entrada da baía da Babitonga (verão – inverno) e de 42 a 46 dias (verão – inverno) a montante do canal do Linguado.

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV: **3**

FOLHA:

34/132

A região do canal do Linguado certamente apresenta maior tempo de residência em virtude do fechamento do canal, utilizando os dados de datação obtidos por Demori (2008) é possível estimar uma taxa de sedimentação de aproximadamente 1,19 cm/ano antes do fechamento do canal e de 1,71 cm/ano após o fechamento, porém esta taxa deve ser consideravelmente inferior no interior da Baía.

4.2.2. CARACTERIZAÇÃO QUÍMICA

A seguir são apresentados os resultados da caracterização química (Grupo 3 – Tabela 3) obtidos nas campanhas semestrais realizadas em abril e setembro de 2023. Estes resultados são comparados com períodos anteriores de monitoramento, buscando compreender como os parâmetros químicos se comportam, quais as tendências e como eles se relacionam aos demais fatores ambientais no tempo e no espaço.

A Figura 21 apresenta os resultados dos parâmetros que estiveram presentes em concentrações detectáveis nas campanhas realizadas durante o ano de 2023, comparados com os parâmetros registrados no ano de 2022. No caso do arsênio, a comparação foi com setembro de 2021, campanha onde este parâmetro apresentou concentrações em níveis detectáveis em pelo menos uma estação amostral. Os resultados obtidos são comparados com os limites de Nível 1 estabelecidos pela Resolução CONAMA Nº 454/2012.

De forma geral, os metais e semimetais apresentaram baixas concentrações e foram inferiores aos limites de Nível 1 da legislação vigente (Resolução CONAMA Nº454/2012). Na campanha realizada em abril de 2022, houve registro em níveis detectáveis somente para o zinco e para o cromo, já na campanha realizada em setembro de 2022, além destes metais, também foram detectadas concentrações de cobre e níquel.

O cobre apresentou baixas concentrações em todas as estações amostrais em que ocorreu, sendo registrado nas estações amostrais situadas na porção interna da baía (#1 a #13 e estação de controle da baía) onde se observaram os menores tamanhos de grão.com concentrações similares nos anos de 2022 e 2023. As estações amostrais situadas no canal externo e na área de descarte não apresentaram concentrações em níveis detectáveis para o cobre.

O zinco foi o metal que apresentou maiores concentrações em relação ao limite Nível 1 disposto na legislação vigente e foi detectado em todas as estações amostrais das referidas campanhas. Para este metal, as maiores concentrações aconteceram em abril de 2022, principalmente nos pontos amostrais próximos à área portuária com destaque para a estação #5, atingindo 142,5 mg/kg. Esta concentração é próxima ao limite mais conservativo disposto na legislação (150 mg/kg). Em setembro de 2022 e nas campanhas de março e setembro de 2023, este metal apresentou concentrações baixas em relação a abril de 2022 e similares entre as coletas, sendo sutilmente superiores nas estações amostrais situadas no interior de Baía.

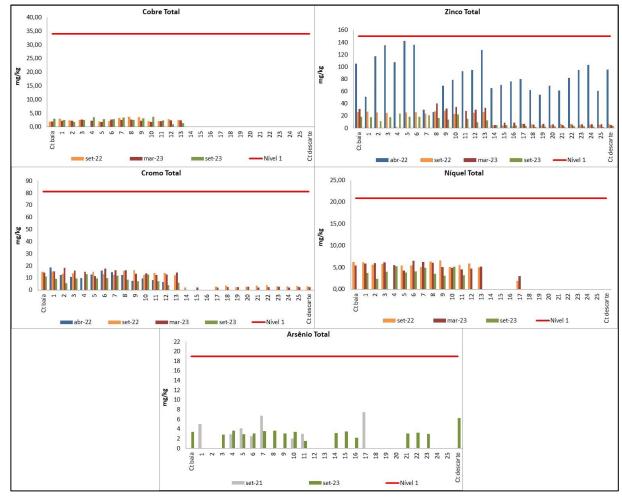


Figura 21. Concentrações de metais em 27 amostras de sedimentos superficiais coletados na área de influência do Porto de São Francisco de Sul entre abril de 2022 e dezembro de 2023.

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

	3	
FOLHA:		

REV:

36/132

O cromo também apresentou baixas concentrações nas campanhas realizadas em 2022 e 2023. O cromo foi detectado em concentrações similares nos anos de coleta no interior da baía. No entanto, somente em setembro de 2022 e em março de 2023, a ocorrência deste metal estende-se também para as estações amostrais situadas na área de descarte em concentrações consideravelmente inferiores ao limite legalmente disposto.

Na campanha realizada em setembro de 2022 e nas campanhas executadas em 2023 verificou-se concentrações detectáveis de níquel, principalmente nas estações situadas no interior da baía Assim como o cobre e o cromo este elemento apresentou maiores concentrações nas amostras coletadas no canal interno onde os sedimentos finos são predominantes. Em geral as concentrações observadas foram similares entre as coletas. Este metal foi detectado em somente uma estação amostral situada na região de descarte (#17) em setembro de 2022 e em março de 2023.

O arsênio apresentou concentrações em níveis detectáveis na campanha realizada em setembro de 2023, em estações amostrais situadas no interior da baía, no canal de acesso e na área de descarte. Desde setembro de 2021, quando apresentou concentrações semelhantes, o arsênio não apresentava níveis detectáveis, embora em número menorde estações amostrais (Figura 21). No entanto salientase que as concentrações verificadas para este parâmetro atenderam integralmente a legislação pertinente.

No que se constitui à caracterização química dos sedimentos, foram analisados os parâmetros químicos indicados no Grupo 1 na Tabela 3, o carbono orgânico total, nitrogênio Kjeldahl e fósforo total. As campanhas amostrais, que para estes parâmetros possuem frequência trimestral, foram realizadas nos meses de abril, junho, setembro e dezembro de 2022 e março, junho, setembro e dezembro de 2023.

Em geral, os nutrientes e o carbono orgânico total foram registrados em todas as campanhas amostrais realizadas em 2022, em concentrações relativamente inferiores aos valores de alerta estabelecidos pela Resolução CONAMA Nº 454/2012. As distribuições destes parâmetros foram similares entre as

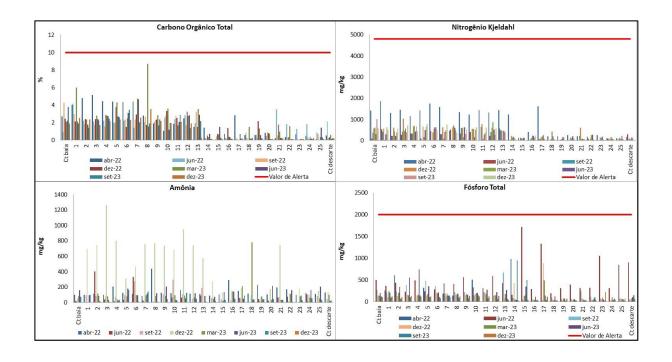
IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM


REV:	
	3
FOLHA:	

37/132

estações amostrais nos quatro meses de coleta, mas com variações de concentrações entre as campanhas.

O carbono orgânico total e o nitrogênio Kjeldahl apresentaram um padrão semelhante com concentrações superiores nas estações amostrais localizadas na área interna da baía e inferiores nos pontos situados na plataforma continental (Figura 22). Este padrão de distribuição é esperado e parece estar associado aos sedimentos finos desta região, que propiciam o aumento de atividade microbiológica. Dessa forma, os teores destes nutrientes aumentam na primavera, atingindo maiores concentrações no verão, já que os sedimentos finos possuem maior capacidade de acumulação. Em contrapartida, no outono e no inverno estas concentrações são mais baixas estando ligadas as frações mais grosseiras.

O carbono orgânico total apresentou a maior concentração na campanha realizada em março de 2023 na estação amostral #8, onde sua concentração foi de 8,7%, já para o nitrogênio as maiores concentrações foram registradas na campanha realizada em abril de 2022 (Figura 22).

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV: **3**

FOLHA:

38/132

Figura 22. Concentrações de carbono orgânico total, nitrogênio kjeldahl, fósforo e de amônia em quatro campanhas realizadas entre abril de 2022 e dezembro de 2023 em 27 amostras de sedimentos superficiais coletados na área de influência do Porto de São Francisco de Sul.

Por sua vez, o fósforo apresentou concentrações similares entre as estações amostrais e as campanhas realizadas, com exceção da campanha realizada em junho de 2022, quando foram, excepcionalmente, registradas concentrações mais elevadas, principalmente nas estações amostrais #15 (1.713,7 mg/kg), #17 (1.333,1 mg/kg), #23 (1.051,6 mg/kg), #25 (850,7 mg/kg) situadas na plataforma continental e no ponto controle de descarte (901,8 mg/kg) (Figura 22). No entanto, estas apresentam-se, na grande maioria, inferiores ao valor de alerta estipulado para este nutriente, que é de 2.000 mg/kg. Em duas estações amostrais situadas no canal externo (#14 a #17) nas campanhas de abril e dezembro de 2022, é possível notar um aumento das concentrações de fósforo em relação às demais estações. Em 2023 as concentrações deste nutriente foram inferiores em todas as campanhas avaliadas.

Na legislação vigente, a amônia não possui um valor de alerta estipulado, o que a torna menos restritiva para a determinação da qualidade dos sedimentos. Porém, como parte deste monitoramento a determinação das concentrações deste composto é importante para dar suporte às análises toxicológicas. Nos meses analisados, as concentrações de amônia foram similares entre as estações amostrais e as campanhas realizadas, com concentrações mais expressivas registradas na campanha realizada em dezembro de 2022. Já nas campanhas posteriores de 2023 este parâmetro apresentou concentrações relativamente baixas, não tendo sido detectado na coleta realizada em dezembro de 2023, conforme a Figura 22.

Ao analisar o histórico dos metais, em todas as campanhas realizadas entre fevereiro de 2017 e setembro de 2021, percebeu-se que estiveram em concentrações inferiores ao Nível 1 proposto pela Resolução CONAMA Nº 454/2012. Excepcionalmente, em duas campanhas o arsênio e o cádmio apresentaram concentrações superiores ao Nível 2 que é indicativo de maior probabilidade de efeitos adversos à biota, disposto na legislação vigente. Na campanha de março de 2020, na estação amostral #16 (situada em ambiente marinho, no canal externo de acesso ao porto), o arsênio apresentou concentração de 19,30 mg/kg, ultrapassando sutilmente o limite de Nível 1 que é 19 mg/kg). Nas

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:		
	3	
FOLHA:		
	39/132	

campanhas anteriores e nas campanhas posteriores este semimetal apresentou concentrações relativamente baixas, incapazes de causar problemas crônicos relacionados à atividade portuária.

Em setembro de 2020, o cádmio apresentou concentrações superiores ao limite de Nível 1 (1,2 mg/kg) em três estações amostrais. No ponto #4 a concentração registrada foi de 4,34 mg/kg, já nas estações amostrais #23 e #24, situadas na área de descarte na plataforma continental, as concentrações foram mais baixas, 1,244 mg/kg e 1,423 mg/kg respectivamente, discretamente superiores ao limite de Nível 1. Estas concentrações de cádmio que estiveram em desacordo com a Resolução CONAMA Nº 454/2012, estimularam o comprometimento do Grupo Acquaplan ao PBA a realizar, com recursos próprios, todos os ensaios químicos dos sedimentos amostrados nas estações amostrais #4, #10, #14, #16 e #24 na coleta de dezembro de 2020. Nos resultados desta campanha posterior não se observaram concentrações de cádmio em níveis detectáveis, assim como as campanhas seguintes, realizadas até setembro de 2021.

Acompanhando os dados gerados deste o início deste programa de monitoramento, verifica-se que não foram observadas concentrações de tributilestanho (TBT), pesticidas organoclorados, hidrocarbonetos policíclicos aromáticos e bifenilas policloradas (PCBs) acima do limite de detecção nos sedimentos da área de influência do Porto de São Francisco do Sul durante todo o monitoramento realizado entre 2017 e 2023.

Dos nutrientes avaliados entre fevereiro de 2017 e dezembro de 2023, somente o fósforo apresentou concentrações superiores ao valor de alerta disposto na normativa vigente (2000 mg/kg) em três campanhas subsequentes. Na campanha realizada em dezembro de 2019, a concentração de fósforo registrada na estação amostral #8 foi de 3.431,84 mg/kg. Na campanha posterior, realizada em março de 2020, o fósforo excedeu o valor de alerta nas estações amostrais #7 (3.219,84 mg/kg), #16 (3.204,65 mg/kg), #18 (5.430,29 mg/kg) e na estação amostral #20 (2.294,46 mg/kg). Na campanha realizada em junho de 2020, o fósforo excedeu o valor de alerta nas estações amostrais #6 (2.378,92 mg/kg), #10 (3.245,26 mg/kg), #11 (4.493,57 mg/kg) e #17 (4.335,71 mg/kg). As campanhas posteriores apresentaram concentrações de fósforo inferiores ao valor de alerta.

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

REV:		
	3	
FOLHA:		

40/132

Para comparar os dados obtidos no presente monitoramento foi utilizado um estudo sobre a qualidade dos sedimentos da baía da Babitonga que foi avaliada a partir de um testemunho, amostrado próximo do canal de antigo acesso a Barra do Sul por Demori (2008). O estudo contemplou uma revisão pretérita de trabalhos realizados na região da Babitonga entre os anos de 1981 e 2004, concluindo que as concentrações de metais pesados apresentaram uma tendência de decréscimo a partir de 1985.

Na Tabela 4 estão dispostos os dados de concentrações máximas já obtidas na região, assim como os dados de estratos do testemunho de Demori (2008), que por datação, relaciona os seus primeiros 15 cm entre os anos de 1978 e 1989. O comparativo de dados evidencia um cenário atual com excelente qualidade dos sedimentos. Mesmo considerando as pontualidades pretéritas já registradas no atual PBA, as concentrações de metais são relativamente baixas quando comparadas ao que já se observou nas décadas passadas.

Tabela 4. Médias de concentrações de metais separados por seção, sendo interno (estações #1 a #9), canal interno (estações #10 a #15), canal externo (estações #16 #17), descarte (estações #18 a #25) e estações de controle (baía e descarte), realizadas entre os anos de 2017 e 2023 na área de influência do Porto de São Francisco do Sul e concentrações de metais obtidas em Demori (2008) para a Baía da Babitonga.

	Estratos (cm)	Cd (mg/kg)	Cu (mg/kg)	Pb (mg/kg)	Cr (mg/kg)	Ni (mg/kg)	Zn (mg/kg)					
	0-5	0,11	18,96	41,83	62,97	43,02	128,73					
	5-10	0,114	16,76	31	59,07	35,37	107,67					
	10-15	0,116	19,89	30,88	61,43	38,37	123,11					
	15-20	0,118	17,57	33,61	58,62	37,6	102,26					
(80	20-25	0,126	17,98	38,36	61,29	39,44	105,22					
Demori (2008)	25-30	0,134	19,33	29,99	55,96	39,94	82,54					
ori (30-35	0,161	17,02	26,5	53,74	41,41	76,48					
- ma	35-40	0,111	15,57	29,81	50,46	37,19	113,43					
ă	40-45	0,192	16,84	29,4	54,82	37,01	91,26					
	45-50	0,176	15,76	27,6	56,28	36,63	74,33					
	50-55	0,212	15,75	33,3	56,84	38,71	82,5					
	55-60	0,189	19,58	37,5	55,66	43,35	103,17					
	Média testemunho	0,15	17,58	32,48	57,26	39,00	99,23					
	FATMA (1982) - FATMA (1985) - PREFEITURA MUNICIPAL DE JOINVILLE (1991) - OLIVEIRA et. al. (2006) apud Demori (2008)											
Revisão Demori (2008)		Cd (mg/kg)	Cu (mg/kg)	Pb (mg/kg)	Cr (mg/kg)	Ni (mg/kg)	Zn (mg/kg)					
Rev Der (20	Concentração Máxima	0,8	50	50	75	61	517					
7-	Setor			Média PBA								
201	36101	Cd (mg/kg)	Cu (mg/kg)	Pb (mg/kg)	Cr (mg/kg)	Ni (mg/kg)	Zn (mg/kg)					
an ,	Interno	0,20	2,97	3,48	8,18	3,58	26,87					
quapl: 2023	Canal Interno	0,20	2,23	2,05	4,91	2,75	17,11					
cdu	Canal Externo	0,19	2,41	2,76	4,86	3,55	14,21					
ls A	Descarte	0,18	1,66	1,46	2,90	0,78	11,95					
Dados Acquaplan 2017- 2023	CtBaía	0,30	2,98	3,25	8,62	3,90	26,01					
Ď	CtDescarte	-	3,70	2,67	2,69	2,01	13,31					

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS SON SEN HARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR - PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:		
	3	
FOLHA:		

41/132

Os indicadores sedimentológicos selecionados apresentaram poucas variações ao longo do estudo, muitas delas ocasionadas principalmente por fenômenos naturais, observadas nos indicadores texturais. Os indicadores de qualidade, por sua vez, seguem as oscilações texturais, uma vez que a presença de sedimentos finos (silte e argila) possuem maior capacidade de adsorção de contaminantes. Ainda assim, mantiveram-se baixos ao longo do monitoramento, sem evidências de relação direta com a atividade portuária.

4.2.3. DETERMINAÇÃO DA MACROFAUNA BENTÔNICA DE FUNDO INCONSOLIDADO

A seguir, apresenta-se os resultados obtidos entre 2017 e 2023 nas campanhas trimestrais de macrofauna bentônica de fundo inconsolidado (Grupo 2 - Tabela 3). Na área de influência do Porto de São Francisco do Sul foram identificados, ao longo do monitoramento, um total de 11.648 indivíduos da macrofauna, pertencentes a onze filos e cento e treze táxons; destes, 57 táxons foram coletados em 2023 (Tabela 5). Os maiores valores de abundância foram encontrados na campanha realizada em setembro/20 (N= 1.721 indivíduos), enquanto os menores valores foram registrados na campanha de março/23 (N=101 indivíduos) - Figura 23

Ao longo de todo o estudo o filo Arthropoda foi mais abundante, caracterizando 48,4% da fauna, sendo representado, sobretudo, pela ordem Amphipoda N.I. Para o ano de 2023, seguido dos anfípodes, a família de poliquetas Capitelidae foi o grupo mais representativo. A ordem Amphipoda exerce um papel fundamental na cadeia trófica marinha, compondo a dieta de inúmeros animais com hábito alimentar bentônico, dentre eles poliquetas, aves, crustáceos, nemertíneos, mamíferos e peixes (PALMA & OJEDA, 2002; THIEL, 2000; THIEL *et al.*, 2003). Algumas espécies tendem a habitar áreas mais estáveis, devido a sua sensibilidade ao estresse ambiental causado pelo aumento do teor de matéria orgânica e de outros tipos de poluentes, como metais e hidrocarbonetos derivados do petróleo (DAUVIN, 1998).

Capitellidae é uma família de poliquetas encontrada em diversos tipos de sedimentos, frequentemente em alta abundância, desde a zona entre marés até o mar profundo. A maioria das espécies vive em tubos ou galerias revestidos de muco (BLAKE, 2000) e geralmente são consideradas comedores de

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

-

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

REV:	 •••••		
		3	

FOLHA:

42/132

depósito não seletivos (FAUCHALD & JUMARS, 1979). Muitas espécies (por exemplo, o complexo de espécies *Capitella capitata*) são oportunistas e foram designadas como bioindicadores de perturbações ambientais (GRASSLE & GRASSLE 1974, 1976). Pearson & Rosenberg (1978) assim como Warren (1991) observam, no entanto, que abundâncias elevadas de oportunistas como *C. capitata* podem refletir enriquecimento orgânico elevado, independentemente de sua causa.

Tabela 5 Abundância total e contribuição relativa (%) dos táxons para as campanhas de coleta da macrofauna bentônica de fundo inconsolidado da região de influência do Porto de São Francisco – SC. Cont% = Porcentagem de contribuição do táxon em relação a fauna total identificada

T /	2017	2010	2010	2020	2024	2022		20	23		T I	Cont.%
Táxons	2017	2018	2019	2020	2021	2022	mar	jun	set	dez	Total	
ANNELIDA												39%
Ampharetidae	50	4	43	138	0	0	0	0	0	0	235	2,00%
Capitellidae	71	8	179	45	39	263	9	30	7	11	662	5,70%
Cirratulidae	25	6	64	193	7	3	0	0	2	0	300	2,60%
Chaetopteridae	0	0	0	0	0	1	0	0	0	0	1	0,00%
Cossuridae	0	1	2	2	0	0	0	1	0	0	6	0,10%
Dorvilleidae	7	3	8	5	1	6	3	0	0	0	33	0,30%
Eunicidae	1	0	5	3	1	0	0	0	2	0	12	0,10%
Goniadidae	23	10	16	32	12	0	0	0	1	0	94	0,80%
Glyceridae	41	4	19	17	4	21	6	5	4	6	127	1,10%
Hermundura	0	0	0	0	1	2	1	0	0	0	4	0,00%
Hesionidae	3	7	12	10	2	1	0	0	0	8	43	0,40%
Lumbrineridae	13	6	27	31	25	32	1	0	0	43	178	1,50%
Maldanidae	59	0	0	2	0	0	0	0	0	0	61	0,50%
Magelonidae	32	7	11	30	6	15	15	4	2	2	124	1,10%
Nephtyidae	13	4	10	1	0	3	0	0	0	0	31	0,30%
Nereididae	15	7	13	3	12	1	0	1	1	0	53	0,50%
Oenonidae	1	0	0	0	0	0	0	0	0	0	1	0,00%
Oligochaeta	0	0	0	0	0	7	1	1	0	0	9	0,10%
Onuphidae	23	11	9	11	4	0	0	0	0	1	59	0,50%
Opheliidae	37	2	36	19	0	2	21	1	0	0	118	1,00%
Orbiniidae	10	8	13	2	3	0	1	0	0	1	38	0,30%
Oweniidae	110	348	210	27	1	2	0	1	1	0	700	6,00%
Paraonidae	38	21	26	4	4	2	0	0	0	2	97	0,80%
Pectinariidae	0	0	0	0	0	0	0	0	2	0	2	0,00%
Pilargidae	5	0	2	0	0	3	0	0	1	2	13	0,10%

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

REV:

3

FOLHA:

PROJETO BASICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

Táwana	2017	2010	2010	2020	2021	2022		2023			Total	Cont.%
Táxons	2017	2018	2019	2020	2021	2021 2022	mar	jun	set	dez	Total	Cont.%
Pisionidae	0	0	4	2	0	2	0	0	3	1	12	0,10%
Pholoididae	3	1	0	0	0	0	0	0	0	0	4	0,00%
Phylodocidae	1	1	0	3	1	2	0	0	5	0	13	0,10%
Poecilochaetidae	0	0	0	0	0	4	0	0	0	0	4	0,00%
Polynoidae	16	7	8	6	3	15	3	3	8	0	69	0,60%
Sabelaride	0	1	0	1	0	0	0	0	0	0	2	0,00%
Sabellidae	18	36	33	44	0	3	0	0	0	0	134	1,20%
Serpulidae	0	6	1	1	0	4	0	0	0	0	12	0,10%
Sigalionidae	13	1	10	0	0	0	0	0	0	0	24	0,20%
Spionidae	149	57	170	102	41	57	1	16	6	10	609	5,20%
Sternapsis	0	2	0	0	1	0	0	0	0	0	3	0,00%
Syllidae	39	36	36	282	49	42	2	11	1	1	499	4,30%
Terebellidae	1	1	90	34	5	45	0	0	0	0	176	1,50%
ARTHROPODA												48,40%
Amphipoda	179	223	1.375	464	422	87	16	50	34	30	2.880	24,70%
Anthuridae	0	3	0	0	0	0	0	0	0	0	3	0,00%
Brachyura	32	18	13	55	6	16	2	0	1	0	143	1,20%
Caprellidae	3	32	99	44	37	9	0	2	11	10	247	2,10%
Copepoda	10	2	9	1.481	14	146	0	15	0	7	1.684	14,50%
Chaetiliidae	2	0	0	0	0	0	0	0	0	0	2	0,00%
Cirripedia	0	0	0	0	1	2	0	1	2	0	6	0,10%
Cumacea	15	8	13	4	0	2	0	0	0	0	42	0,40%
Decapoda	0	0	0	0	0	2	1	1	0	1	5	0,00%
Emerita	0	0	2	8	11	4	0	0	0	0	25	0,20%
Insecta	3	1	0	0	19	1	0	0	0	0	24	0,20%
Isopoda	49	11	14	55	66	21	4	6	15	2	243	2,10%
Lepidopa richmondi	1	0	0	0	0	0	0	0	0	0	1	0,00%
Mysidacea	6	0	0	32	0	1	0	1	0	0	40	0,30%
Nephropidae	0	0	0	0	0	1	0	0	0	0	1	0,00%
Ostracoda	8	6	2	0	0	0	0	6	1	0	23	0,20%
Paguridae	8	6	4	1	0	0	0	0	0	0	19	0,20%
Penaeidae	10	1	12	44	0	3	0	0	0	0	70	0,60%
Porcellanidae	21	0	0	0	0	0	0	0	0	0	21	0,20%
Pycnogonida	1	3	3	19	7	5	0	0	1	0	39	0,30%

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

								2023				
Táxons	2017	2018	2019	2020	2021	2022	mar	jun	set	dez	Total	Cont.%
Tanaidacea	20	1	32	8	37	11	0	4	1	2	116	1,00%
CHORDATA												0,80%
Cephalocordata	31	8	12	18	3	6	4	6	3	0	91	0,80%
ECHINODERMATA												2,70%
<i>Mellita</i> sp.	0	0	0	0	0	3	0	0	0	1	4	0,00%
Ophiuro	49	34	73	108	5	29	0	3	13	0	314	2,70%
ECHIURA	4	0	13	3	0	0	0	0	0	0	20	0,20%
HEMICHORDATA	5	0	0	0	0	0	0	0	0	0	5	0,00%
MOLLUSCA												4,70%
Abra cf. uruguayensis	1	0	0	0	0	2	0	0	0	0	3	0,00%
Acteocinidae	3	2	1	0	0	0	0	0	0	0	6	0,10%
<i>Agaronia</i> sp.	1	6	5	0	0	0	0	0	0	0	12	0,10%
Anachis sp.	3	4	3	0	0	0	0	0	0	0	10	0,10%
Anadara ovalis	1	2	0	0	1	0	0	1	0	0	5	0,00%
Bivalve n.i.	0	0	0	0	3	7	0	0	0	5	15	0,10%
Caecum sp.	10	14	24	14	2	0	0	1	1	0	66	0,60%
Calyptraeidae	0	0	0	2	0	0	0	0	0	0	2	0,00%
Chione cancellata	1	3	0	0	1	1	0	0	0	0	6	0,10%
Codakia cf. pectinella	2	3	0	0	0	1	0	0	0	0	6	0,10%
Corbula caribea	3	0	0	4	8	0	0	2	1	0	18	0,20%
Crassatellidae	4	1	0	2	0	3	0	9	4	0	23	0,20%
<i>Cylichna</i> sp.	0	0	0	0	31	2	0	0	0	0	33	0,30%
Diplodonta sp.	0	0	0	2	0	11	0	1	0	0	14	0,10%
Divaricella sp.	0	6	21	2	0	1	1	0	0	0	31	0,30%
Donax sp.	0	0	0	0	0	3	1	5	0	0	9	0,10%
Echinolittorina sp.	0	0	0	2	0	0	0	0	0	0	2	0,00%
Eulimidae	0	0	1	1	1	0	0	0	0	0	3	0,00%
Gastropoda sp1	0	0	0	1	0	0	0	0	0	0	1	0,00%
Isognomon bicolor	0	0	0	0	1	0	0	0	0	0	1	0,00%
Lottidae	0	0	0	0	0	1	0	0	0	0	1	0,00%
Lucinidae	0	1	1	0	0	0	0	0	0	0	2	0,00%
<i>Macoma</i> sp.	0	0	0	0	0	1	0	0	0	0	1	0,00%
Mactridae	1	0	0	1	0	1	0	0	0	0	3	0,00%
<i>Mendicula</i> sp.	0	0	2	4	0	0	0	0	0	0	6	0,10%

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

REV:

3

FOLHA:

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

Távana	2017	2010	2010	2020	2021	2022		20	23		Total	Comt 0/
Táxons	2017	2018	2019	2020	2021	2022	mar	jun	set	dez	Total	Cont.%
Musculus lateralis	0	1	0	0	0	0	0	0	0	0	1	0,00%
Mytilidae	1	1	0	3	6	2	0	1	0	0	14	0,10%
<i>Natica</i> sp.	1	0	2	0	0	0	0	1	0	0	4	0,00%
<i>Nerita</i> sp.	1	0	0	0	0	0	0	0	0	0	1	0,00%
Nuculidae	2	0	1	1	3	4	0	4	0	0	15	0,10%
<i>Olivancillaria</i> sp.	1	0	0	0	0	0	0	0	0	0	1	0,00%
Olividae	0	0	2	0	0	0	0	0	0	0	2	0,00%
Ostreidae	0	0	2	0	0	5	0	0	0	0	7	0,10%
Pectinidae	0	0	1	0	0	0	0	0	0	0	1	0,00%
Pyramidellidae	0	0	0	1	0	0	0	0	0	0	1	0,00%
Rissoidae	0	0	0	1	1	0	0	0	0	0	2	0,00%
Scaphopoda	1	18	4	2	0	0	0	2	0	0	27	0,20%
Semelidae	12	4	9	5	0	2	0	5	0	0	37	0,30%
Sphenia sp.	0	5	2	3	3	0	0	0	0	0	13	0,10%
Strigila pisiformis	26	14	4	0	0	2	0	1	0	0	47	0,40%
Tellina punicea	7	10	13	13	40	2	1	0	3	2	91	0,80%
Tellinidae	0	0	0	0	0	0	0	0	0	0	0	0,00%
Turbonilla sp.	4	0	1	0	0	0	0	0	0	0	5	0,00%
Veneridae	0	0	0	0	1	1	0	0	0	0	2	0,00%
NEMATODA	14	13	33	36	139	9	0	10	3	2	259	2,20%
NEMERTEA	37	11	15	18	6	24	7	6	8	0	132	1,10%
PLATYHELMINTHES	0	3	0	7	0	0	0	0	0	0	10	0,10%
SIPUNCULA	22	8	15	7	3	15	0	1	0	0	71	0,60%
Total	1.433	1.093	2.891	3.526	1.100	987	101	219	148	150	11.648	100,00%

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV: 3 FOLHA: 46/132

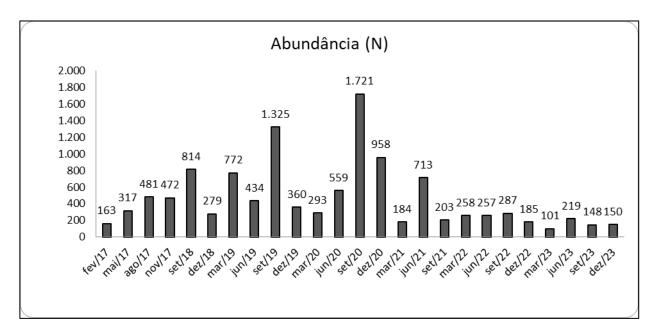


Figura 23.. Valores de abundância de indivíduos (N) da macrofauna bentônica na região de influência do Porto de São Francisco do Sul.

Após aplicar o teste de Shapiro-Wilk sobre fatores campanha, ponto e zona, verificou-se que as amostras não apresentaram distribuição normal. Posteriormente, foi realizada a análise de variância não paramétrica Kruskal-Wallis que exibiu diferença significativa (p<0,05) para todos os fatores (Tabela 6).

Tabela 6. Valores de H teste de Kruskal-Wallis e p para os descritores de riqueza de taxa (S), abundância de indivíduos (N), equitabilidade de Pielou (J') e diversidade de Shannon-Wiener (H') considerado os fatores campanha e zona. Os valores em vermelho representam os descritores que apresentaram diferenças significativas para o fator avaliado (p<0,05).

Fator	Kruskal- Wallis	Riqueza de taxa (S)	Abundância de indivíduos (N)	Diversidade de Shannon-Wiener (H')	Equitabilidade de Pielou (J')
Campanha	H (chi2):	273,1	332,8	206,5	104,9
Campanna	p:	0	0	0	0
Ponto	H (chi2):	143,9	111,7	127,7	90,93
Polito	p:	0	0	0	0
Zona	H (chi2):	84,1	62,51	74,61	55,06
Zona	p:	0	0	0	0

Ao analisar as campanhas amostrais é possível observar que, de maneira geral, a partir de março/2021, até o presente momento, os indicadores ecológicos de riqueza e abundância apresentaram uma mediana similar. Ademais, a coleta realizada em setembro de 2020 exibiu os

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:		
	3	
FOLHA:		
	47/132	

maiores valores de riqueza (SMAX= 17 táxons) e abundância (NMAX= 422 indivíduos) - Figura 24. O alto número de indivíduos nesse período ocorreu principalmente devido à contribuição dos copépodes, o que sugere que neste momento as características abióticas e biológicas favoreceram a ocorrência de um pico de abundância. Porém, é possível observar que após esse período, eles não foram capazes de manter uma população com alta abundância.

Com base nos resultados obtidos na caracterização física do sedimento, observa-se que em setembro de 2020, o sedimento foi mais grosseiro, provavelmente em resposta a um período chuvoso. Corroborando com este resultado, em um estudo realizado por Wondie & Mengistou (2006), que teve como objetivo estimar a reprodução Calanoida e Cyclopoida, foi constatado que a reprodução destes copépodes foi contínua, com picos durante as estações pós e pré-chuvosas.

DRAGAGEM DE MANUTENÇÃO

RELATÓRIO DE DRAGAGEM

SCPAR - PORTO DE SÃO FRANCISCO DO SUL

PROJETO BÁSICO

NÚMERO INFRAS:

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

REV:

3

FOLHA:

48/132

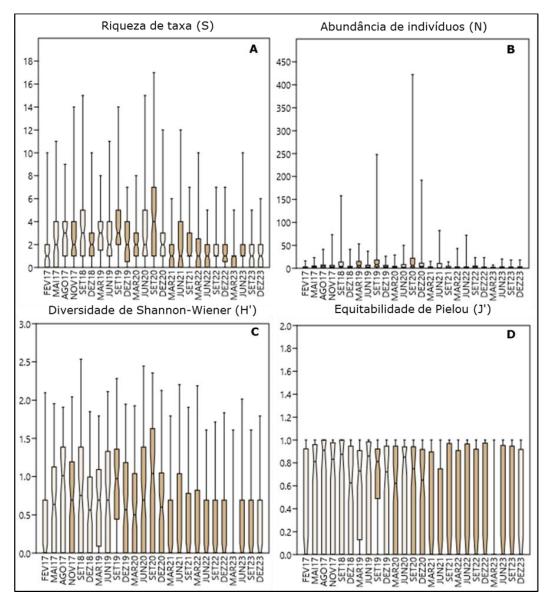


Figura 24. Boxplot dos valores de mediana (Md), quartis de 25% e 75%, valores mínimos (Min) e máximos (Máx) dos descritores de A) riqueza de táxons (S); B) abundância de indivíduos (N); C) diversidade de Shannon-Wiener (H'); e D) equitabilidade de Pielou (J') para macrofauna de fundo inconsolidado na região de influência do Porto de São Francisco durante o período de monitoramento.

Analisando as áreas de amostragem, exceto pela estação amostral #CTD, no geral, os menores valores dos indicadores ecológicos foram encontrados nos pontos mais próximos das instalações do porto, onde há maior influência da água doce e da atividade portuária (Figura 25). De acordo com Barnes (1994) a diversidade dentro de um estuário tende a crescer quando sai da água doce para a água salgada, onde a comunidade bentônica é representada por espécies mais adaptadas às

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:	 	 	
	3		
FOLHA:			

49/132

oscilações dos parâmetros físico-químicos inerentes a este ambiente. Ademais, as atividades portuárias podem influenciar a comunidade bentônica, principalmente aquela situada nas estações amostrais próximas da estrutura portuária (#PSFS).

Alguns dos impactos negativos mais significativos em decorrência da atividade portuária estão relacionados à carga e descarga de produtos químicos e derivados de petróleo, as atividades de limpeza de tanques e operações de reparo nos navios, que trazem impactos significativos com o derramamento de óleos e graxas (JESUS, 2015). Também deve-se considerar as operações de dragagem que são realizadas na área. Segundo Rocha (2016), essa atividade pode resultar na quase, ou total, eliminação da comunidade bentônica, assim como, alterar a estrutura biológica e ecológica do local impactado. Por sua vez, Rosenberg (1977) conclui que as operações de dragagem reduzem a abundância e a diversidade de espécies bentônicas, e o recrutamento larval é fortemente afetado próximo as áreas dragadas.

DRAGAGEM DE MANUTENÇÃO

RELATÓRIO DE DRAGAGEM

SCPAR - PORTO DE SÃO FRANCISCO DO SUL

PROJETO BÁSICO

NÚMERO INFRAS:

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

__

INFRAS ENGENHARIA

REV:

3

FOLHA:

50/132

Figura 25.. Boxplot dos valores ao longo de todo o monitoramento de mediana (Md), quartis de 25% e 75%, ao valores mínimos (Min) e máximos (Máx) dos descritores de A) riqueza de táxons (S); B) abundância de indivíduos (N); C) diversidade de Shannon-Wiener (H'); e D) equitabilidade de Pielou (J') para macrofauna de fundo inconsolidado na região de influência do Porto de São Francisco. PSFS, próximo às estruturas portuárias; CA, canal de acesso; BF, bota-fora; CTB, controle Babitonga; CTD, controle descarte.

Embora o padrão da estrutura da comunidade, quando considerado o fator área, seja que os menores valores dos indicadores ecológicos ocorrem nos pontos próximos as estruturas portuárias, no entanto, esta mesma zona exibiu o valor máximo de riqueza em função de uma amostra coletada no ponto #8. Enquanto o valor máximo de abundância foi registrado no canal de acesso, devido a uma amostra

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:		
	3	
FOLHA:		

51/132

coletada no ponto #14 (Figura 27). A distribuição e composição da comunidade bentônica ocorre na forma de manchas, influenciada pelos distúrbios (MORRISEY et al., 1992), bem como de acordo com a dinâmica das populações, que reflete a história de vida das espécies (MEDEIROS et al., 2016). A atividade de alimentação dos principais táxons comedores de depósito cria micro-habitats no sedimento, favorecendo a distribuição irregular dos organismos. No sedimento, o tamanho das manchas das populações é variável entre os táxons, mas a maioria está distribuída em manchas menores que 1 metro (COSSON et al., 1997).

Além dos pontos sob influência direta do porto, baixos valores de riqueza e diversidade também foram encontrados nos pontos 20, 21, 22, 23 e 25, que se referem ao bota-fora. O descarte de material dragado tem o potencial de afetar os animais dentro do bota-fora e nas áreas adjacentes de forma direta através do soterramento, ou por meio da turbidez de material ressuspenso (NEWELL et al., 1998). De acordo com Cruz-Motta & Collins (2004), o soterramento direto da assembleia macrobentônica a partir da deposição de sedimento gera a diminuição na abundância de organismos e número de espécies.

DRAGAGEM DE MANUTENÇÃO

SCPAR - PORTO DE SÃO FRANCISCO DO SUL

PROJETO BÁSICO

NÚMERO INFRAS:

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

REV:

3

FOLHA:

52/132

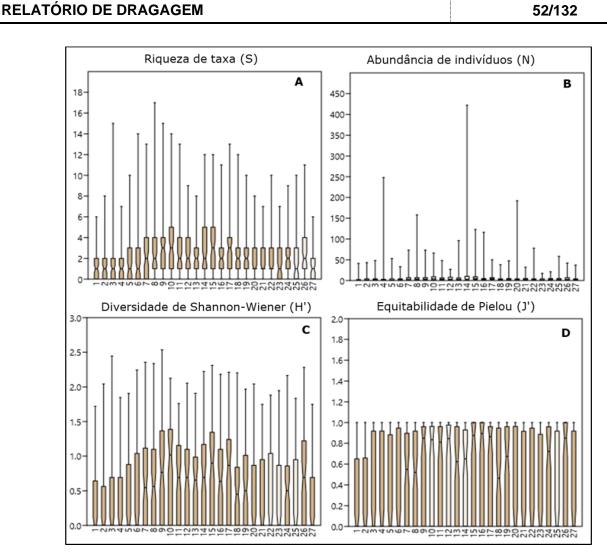


Figura 26. Boxplot dos valores ao longo de todo monitoramento de mediana (Md), quartis de 25% e 75%, valores mínimos (Min) e máximos (Máx) dos descritores de A) riqueza de táxons (S); B) abundância de indivíduos (N); C) diversidade de Shannon-Wiener (H'); e D) equitabilidade de Pielou (J') para macrofauna de fundo inconsolidado.

A análise de escalonamento multidimensional (nMDS) evidenciou uma tendência a formação de grupos definidos para os anos (ANOSIN, R= 0,1292 e p= 0,0001) - Figura 27. No entanto, é possível observar que no geral, as amostras coletadas na zona #CTD foram menos similares as demais devido à diferença na composição da fauna, assim como discutido anteriormente. Os resultados da análise dos percentuais de contribuição das espécies na similaridade (SIMPER), também utilizando como fator os anos amostrados, evidenciaram que dez táxons perfizeram aproximadamente 59% da dissimilaridade da fauna (Tabela 7). Dentre eles, o crustáceo Amphipoda foi o mais representativo, contribuindo com 19% da dissimilaridade entre as campanhas (Figura 28).

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

INFRAS ENGENHARIA

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3
FOLHA:

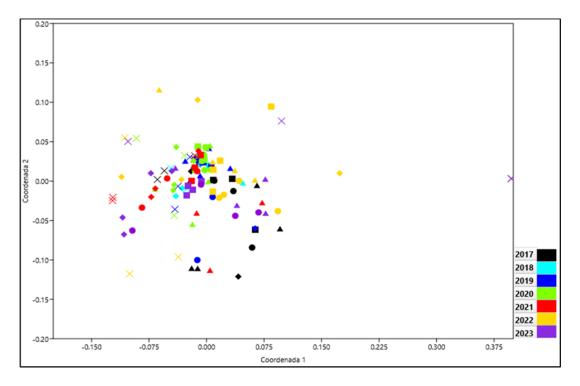


Figura 27. Projeção em espaço bidimensional da escala multidimensional (MDS) da macrofauna bentônica das campanhas realizadas ao longo de todo o monitoramento na região de influência do Porto de São Francisco do Sul utilizando a distância de Bray-Curtis. Coeficiente de estresse = 0,2. (●) PSFS, próximo às estruturas portuárias; (■) CA, canal de acesso; (◆) BF, bota-fora; (▲) CTB, controle Babitonga; (X) CTD, controle descarte.

Tabela 7. Resultados da análise SIMPER. Dissimilaridade média (Diss. Méd.), contribuição (Cont.%), contribuição acumulada (Acum%) e abundância média (N) dos principais táxons/morfotipos que contribuíram para a diferenciação entre as zonas avaliadas na região de influência do Porto de São Francisco do Sul ao longo de todo o monitoramento.

Táwan	Diss.	Cont.	Acum.				N.				
Táxon	Média	%	%	17	18	19	20	21	22	23	
Amphipoda	16,9	19,65	19,65	0,57	1,93	3,77	2,04	1,61	0,33	0,29	
Copepoda	7,97	9,27	28,92	0,02	0,01	0,08	3,71	0,09	6,96	0,12	
Capitellidae	6,51	7,57	36,49	0,22	0,03	0,69	0,12	0,15	1,2	0,26	
Spionidae	5,26	6,12	42,61	0,44	0,3	0,55	0,27	0,15	0,41	0,08	
Oweniidae	3,16	3,67	46,28	0,18	1,35	0,37	0,09	0	0	0	
Lumbrineridae	2,44	2,84	49,12	0,02	0,11	0,1	0,14	0,15	0,15	0,17	
Isopoda	2,38	2,77	51,88	0,1	0,04	0,04	0,15	0,31	0,03	0,06	
Ophiuro	2,17	2,53	54,41	0,1	0,22	0,16	0,26	0,02	0,31	0,05	
Cirratulidae	2,09	2,43	56,84	0,05	0,02	0,39	0,59	0,02	0,01	0,02	
Syllidae	1,97	2,29	59,12	0,09	0,19	0,08	0,65	0,16	0,13	0,03	

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV: **3**

FOLHA:

54/132

Figura 28. Amphipoda - organismo que apresentou maior contribuição para dissimilaridade entre os anos de monitoramento da região de influência do Porto de São Francisco do Sul.

Em contraste aos resultados observados neste monitoramento, investigações prévias conduzidas na baía da Babitonga evidenciaram que a classe Polychaeta, integrante do filo Annelida, prevaleceu como o grupo mais abundante. Em seu estudo ao longo das praias arenosas da desembocadura da baia da Babitonga, Pagliosa (2006) identificou uma riqueza de espécies variando de 0 a 14 e densidades de 0 a 334 indivíduos, com os poliquetas representando aproximadamente 80% dos dados. Ao avaliar a macrofauna bentônica nos fundos inconsolidados de uma maricultura, Oortman (2010) constatou que os poliquetas estiveram sempre presente em todos os pontos, e praticamente dominaram os pontos avaliados. O autor concluiu que a maricultura causa efeito sobre a macrofauna bentônica, devido ao acúmulo de matéria orgânica nos substratos inconsolidados, decorrente da alteração na circulação de água no interior e nas adjacências do cultivo.

No estudo realizado por Vieira et al., 2007, o grupo taxonômico Polychaeta também apresentou a maior ocorrência em todos os pontos amostrados no rio Palmital e no canal do Linguado, localizados na baía da Babitonga, seguido de Crustacea e Mollusca. Segundo os autores, as variações da salinidade e da composição do sedimento ao longo dos pontos de amostragem foram relacionadas com a proximidade das porções dos canais com as áreas de drenagem continental. As diferenças observadas na composição da fauna encontrada no presente monitoramento, e nos demais estudos realizados na região da baia da Babitonga, podem ter ocorrido devido a: localização dos pontos amostrais (e.g. praias arenosas da desembocadura, fundos inconsolidados de uma maricultura, rio Palmital e canal do

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:	
	3
FOLHA:	

55/132

Linguado, canal de acesso, bota-fora e proximidades do Porto); esforço amostral aplicado (e.g. tipo de amostrador, tamanho do amostrador, número de amostras e quantidade de campanhas executadas) e; diferença de condições ambientais.

Com relação a identificação de espécies exóticas e/ou ameaçadas de extinção, foi constatado em junho de 2021 o aparecimento do molusco invasor Isognomon bicolor no ponto 16, localizado no canal de acesso. Contudo, a família Isognomonidae é epifaunal bissada, sendo encontrada em costões rochosos ou associada a esponjas (DOMANESCHI & MARTINS, 2002). Portanto, considerando seu hábito de vida e o fato de até o momento apenas um exemplar ter sido registrado, provavelmente essa espécie não possui uma população estabelecida na área de coleta. O que pode ter ocorrido foi o seu desprendimento de um substrato consolidado próximo, uma vez que a espécie já foi identificada nas estruturas rígidas do entorno (vide Programa de Monitoramento da Macrofauna Bentônica de Fundo Consolidado).

4.2.4. DETERMINAÇÃO DA ECOTOXICIDADE

Para o monitoramento da qualidade dos sedimentos na área de influência do Porto de São Francisco do Sul, foram realizados testes de toxicidade crônicos, em periodicidade semestral (Grupo 4 - Tabela 3). Os testes com o ouriço-do-mar, *Echinometra lucunter* foram realizados em fevereiro, maio e agosto de 2017; setembro de 2018; março e setembro de 2019; março e setembro de 2020; setembro de 2021; junho e setembro de 2022, e março e dezembro de 2023, buscando, assim, indícios de danos crônicos à biota.

Os testes de toxicidade dos sedimentos, de indivíduos coletados durante o monitoramento realizado entre fevereiro de 2017 e dezembro de 2023 demonstraram potencial de toxicidade na maioria das campanhas em amostras coletadas nas áreas próximas às estruturas portuárias do Porto de São Francisco do Sul (sistema aquaviário do Porto). Os elutriatos obtidos destes pontos amostrais apresentaram efeitos letais significativamente diferentes em relação ao controle para os testes de toxicidade crônica com o uso do ouriço-do-mar *Echinometra lucunter*. Em algumas campanhas amostrais foi observado potencial tóxico dos sedimentos coletados nos pontos #Controle_Descarte, #PSFS09 a #PSFS12, e no ponto controle interno da baía (#Controle_Baía). A Tabela 8 apresenta, de

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

.....

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:

FOLHA:

56/132

3

forma resumida, os resultados obtidos a partir dos testes de toxicidade executados no escopo do Plano Básico Ambiental – PBA do Porto de São Francisco do Sul,onsiderando que os resultados dos testes de toxicidades realizados entre 2017 e 2022 já foram apresentados nos Relatórios Consolidados anteriores.

De forma geral, foi observada maior frequência de potencial toxicológico para as amostras associadas a região interna da baía, principalmente da dársena do Porto de São Francisco do Sul. Das treze análises realizadas até a presente data, oito atestaram potencial toxicológico para os pontos #PSFS01 e #PSFS02; enquanto para os pontos #PSFS03 e #PSF04, o potencial tóxico foi registrado em cinco das treze campanhas.

De acordo com a sensibilidade da espécie controle ao cloreto de amônia, somente valores de amônia não ionizada (NH₃) superiores a 0,2 mg/L podem causar mortalidade dos organismos. Portanto, foram analisadas as concentrações de amônia não ionizada nas amostras onde foram verificados potenciais toxicológicos (Tabela 9).

Conforme pode ser observado, de forma geral, o potencial toxicológico das amostras realizadas entre 2017 e 2018 não podem ser atribuídos a presença deste elemento químico. Entretanto, para a amostra coletada no ponto amostral #PSF02 em agosto de 2017, a concentração de amônia não ionizada esteve próxima ao limite referencial. Já para as campanhas de março e setembro de 2019, o potencial toxicológico pode estar associado com a concentração de amônia observada nos elutriatos, que foram superiores a 0,2 mg/L em todos os casos em que se verificaram potenciais tóxicos.

Para as campanhas de março de 2020, setembro de 2021, setembro de 2022, março e dezembro de 2023, o potencial toxicológico verificado nas amostras não pode ser associado com a concentração de amônia observada nos elutriatos. Entretanto, para as amostras coletadas no ponto amostral #PSF01, em setembro de 2022, e no ponto amostral #PSF04, em dezembro de 2023, a concentração de amônia não ionizada esteve próxima ao limite referencial (Tabela 9).

Tabela 8. Resultados dos testes toxicológicos crônicos para ouriço-do-mar das amostras sedimentológicas coletadas na área de influência do Porto de São Francisco do Sul entre fevereiro de 2017 e dezembro de 2023.

Amostras	Fev 2017	Mai 2017	Ago 2017	Set 2018	Mar 2019	Set 2019	Mar 2020	Set 2020	Set 2021	jun/22	Set 2022	mar/23	dez/23
#Controle_Baía	Não Tóxico	-	Não Tóxico	Não- tóxico	Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Tóxico
#PSFS01	Tóxico	Tóxico	Tóxico	Tóxico	Não- tóxico	Tóxico	Não- tóxico	Não Tóxico	Tóxico	Tóxico	Não Tóxico	Tóxico	Não Tóxico

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR - PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:

FOLHA:

57/132

3

#PSFS02	Tóxico	Tóxico	Tóxico	Tóxico	Não- tóxico	Tóxico	Tóxico	Não Tóxico	Tóxico	Não Tóxico	Não Tóxico	То́хісо	Não Tóxico
#PSFS03	Tóxico	Tóxico	Não Tóxico	Tóxico	Não- tóxico	Tóxico	Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico
#PSFS04	Não Tóxico	-	Tóxico	Tóxico	Não- tóxico	Não Tóxico	Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Tóxico	Tóxico
#PSFS05	Não Tóxico	-	Não Tóxico	Não- tóxico	Não- tóxico	Não Tóxico	Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Tóxico
#PSFS06	Não Tóxico	-	Não Tóxico	Tóxico	Não- tóxico	Não Tóxico	Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Tóxico	Tóxico
#PSFS07	Não Tóxico	-	Não Tóxico	Não- tóxico	Não- tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Tóxico	Não Tóxico
#PSFS08	Não Tóxico	-	Não Tóxico	Não- tóxico	Não- tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Tóxico	Não Tóxico
#PSFS09	Não Tóxico	-	Não Tóxico	Tóxico	Não- tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Tóxico	Tóxico
#PSFS10	Não Tóxico	-	Não Tóxico	Não- tóxico	Não- tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Tóxico	Não Tóxico
#PSFS11	Não Tóxico	-	Não Tóxico	Tóxico	Não- tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico
#PSFS12	Não Tóxico	-	Não Tóxico	Não- tóxico	Não- tóxico	Não Tóxico	Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Tóxico	Não Tóxico
#PSFS13	Não Tóxico	-	Não Tóxico	Não- tóxico	Não- tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico
#PSFS14	Não Tóxico	-	Não Tóxico	Não- tóxico	Não- tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico
#PSFS15	Não Tóxico	-	Não Tóxico	Não- tóxico	Não- tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico
#PSFS16	Não Tóxico	-	Não Tóxico	Não- tóxico	Não- tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico
#PSFS17	Não Tóxico	-	Não Tóxico	Não- tóxico	Não- tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico
#PSFS18	Não Tóxico	-	Não Tóxico	Não- tóxico	Não- tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico
#PSFS19	Não Tóxico	-	Não Tóxico	Não- tóxico	Não- tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico
#PSFS20	Não Tóxico	-	Não Tóxico	Não- tóxico	Não- tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico
#PSFS21	Não Tóxico	-	Não Tóxico	Não- tóxico	Não- tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico
#PSFS22	Não Tóxico	-	Não Tóxico	Não- tóxico	Não- tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico
#PSFS23	Não Tóxico	-	Não Tóxico	Não- tóxico	Não- tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico
#PSFS24	Não Tóxico	-	Não	Não- tóxico	Não- tóxico	Não Tóxico	Não	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico	Não Tóxico
#PSFS25	Não	-	Tóxico Não	Não-	Não-	Não	Tóxico Não	Não	Não	Não	Não	Não	Não
#Controle_Descarte	Tóxico Tóxico	Não tóxico	Tóxico Não Tóxico	tóxico Não- tóxico	tóxico Não- tóxico	Tóxico Não Tóxico	Tóxico Não Tóxico	Tóxico Não Tóxico	Tóxico Não Tóxico	Tóxico Não Tóxico	Tóxico Não Tóxico	Tóxico Tóxico	Tóxico Não Tóxico

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

REV:	
	3
FOLHA:	

58/132

Tabela 9 Concentração de amônia não ionizada (NH₃) e efeito observado nos testes de toxicidade crônica com amostras de sedimento entre fevereiro de 2017 e dezembro de 2023, classificação em função da presença de amônia no elutriato.

Data da campanha	Amostra	NH₃ mg/L	Classificação	
Data da Campania	#PSFS 01	0,0762	В	
	#PSFS 02	0,0633	В	
Fevereiro de 2017	#PSFS 03	0,0609	В	
	#Cont D	0,0012	В	
	#PSFS 01	0,1029	В	
Maio de 2017	#PSFS 02	0,1041	В	
ridio de 2017	#PSFS 03	0,1185	В	
	#PSFS 01	< LD	В	
Agosto de 2017	#PSFS 02	0,1968	В	
Ag0310 uc 2017	#PSFS 04	0,1236	В	
	#PSFS 01	0,0015	В	
	#PSFS 02	0,1121	В	
	#PSFS 03	0,0786	В	
Setembro de 2018	#PSFS 04	0,1021	В	
Setembro de 2016	#PSFS 06	0,0882	В	
	#PSFS 09	0,0286	В	
	#PSFS 11	<ld< td=""><td>В</td></ld<>	В	
Março de 2019	#Cont B	0,2121	C	
Harço de 2015	#PSFS 01	0,7552	C	
Setembro de 2019	#PSFS 02	0,4188	C	
Setembro de 2013	#PSFS 03	0,4361	C	
	#PSFS 02	0,087	В	
	#PSFS 03	0,062	В	
	#PSFS 04	0,1748	В	
Março de 2020	#PSFS 06	0,0877	В	
	#PSFS 06	0,1041	В	
	#PSFS 12	0,0261	В	
	#PSFS 01	0,0778	В	
Setembro de 2021	#PSFS 02	0,0552	В	
Setembro de 2022	#PSFS 01	0,19	В	
	#PSFS 01	0,05	В	
	#PSFS 02	0,056	В	
	#PSFS 04	0,082	В	
	#PSFS 06	0,06	В	
	#PSFS 07	0,072	В	
Março de 2023	#PSFS 08	0,048	В	
	#PSFS 09	0,041	В	
	#PSFS 10	0,04	В	
	#PSFS 12	0,037	В	
	#PSFS CD	0,061	В	
	#PSFS CB	0,09	В	
	#PSFS 04	0,119	В	
Dezembro de 2023	#PSFS 05	0,046	В	
	#PSFS 06	0,07	В	
	#PSFS 09	0,049	В	
	# . O. O O O	0,015		

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:	
	3

FOLHA:

59/132

Em função da presença de amônia nas amostras que apresentaram potencial toxicidade, e sua relação com os resultados obtidos, as amostras podem ser classificadas em duas (02) classes distintas como anteriormente abordado:

B. Com toxicidade (percentual de efeito > que 20% e baixo conteúdo em amônia não ionizada, NH₃), ou seja, com contaminação química; e,C. com toxicidade e alto conteúdo em NH₃, que pode mascarar contaminação química.

As amostras que não possuíram potencial tóxico e foram classificadas como A (sem toxicidade) e D (sem toxicidade, mas com alta concentração de NH₃, e sem explicação dentro do padrão da ecotoxicologia do sedimento) não foram incluídas nesta tabela.

Nove dos treze períodos analisados (fevereiro, maio e agosto de 2017, setembro de 2018, março de 2020, setembro de 2021, setembro de 2022, março e dezembro de 2023) enquadram-se em uma única classe: B - quando há potencial de toxicidade, porém não há toxicidade de amônia (valores de concentrações na amostra inferiores a 0,2 mg/L). Assim, foi observado nas nove campanhas amostrais em que a toxicidade foi observada, que a mesma não pode ser atribuída à concentração de amônia no sedimento. Já para as campanhas de março e setembro de 2019, conforme verificado, a classificação das amostras enquadra-se na categoria C, onde é observada toxicidade associada a maior quantidade de amônia não ionizável, com concentração superior a 0,2 mg/L.

Considerando a possibilidade de contaminação por outros parâmetros químicos presentes no sedimento como uma das possíveis causas do potencial tóxico observado, foram verificados, ainda, os resultados obtidos a partir das análises químicas da qualidade sedimentar, apresentadas no item "Caracterização Química".

De forma geral, foram observados valores abaixo do qual se prevê probabilidade de efeitos adversos à biota, com concentrações dos parâmetros analisados oscilando entre "não detectado" e limite de detecção do método até limites inferiores ao Nível 1 (águas salino-salobras) estipulado pela Resolução CONAMA N° 454/2012. Ainda, nas amostras de sedimento as concentrações de HPAs observadas em todos os pontos amostrais são inferiores aos limites de detecção, não indicando contaminação potencial por óleo.

A grande capacidade de adsorção de sedimentos finos representa um importante repositório para os contaminantes, servindo como um registro temporal de variações na contaminação, evidenciando a correlação entre as variáveis toxicológicas, granulométricas e conteúdo de matéria orgânica (VALETTE-SILVE, 1993). Esteves (1998) classifica como inorgânicos os sedimentos que contêm

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

REV:		 	
		3	

FOLHA:

60/132

teores de matéria orgânica (MO) menores que 10%; e os com percentual de peso seco maiores que 10%, são classificados como orgânicos. Segundo Gomes & Azevedo (2003), os sedimentos contêm teores de MO que podem variar de 1 a 8%. Porém, já são considerados enriquecidos de MO quando apresentam valores acima de 0,5%.

A Resolução CONAMA Nº 454/2012 indica como valor alerta - valor orientador para carbono orgânico total (COT) e nutrientes, acima do qual há possibilidade de ocorrer prejuízo ao ambiente na área de disposição em corpo de água – teores acima de 10%. Segundo esta mesma Resolução, a critério do órgão ambiental licenciador, o COT poderá ser substituído pelo teor de matéria orgânica.

Em relação a granulometria dos sedimentos, a maioria das amostras que apresentaram potencial tóxico são classificados como silte médio (64,45%). Nos pontos amostrais localizados na área interna da dársena do Porto de São Francisco do Sul, a fração silte médio é influenciada principalmente pela baixa hidrodinâmica desta região de abrigo portuário. Em seguida foram observados potenciais tóxicos em amostras de fração areia muito fina (17,78%). A maioria das amostras (51,11%) em que se observou toxicidade pode ser classificada como sedimentos orgânicos, segundo a classificação de Esteves (1998), onde o percentual de matéria orgânica é maior que 10%. Desta forma, o potencial tóxico observado nas amostras coletadas nos pontos amostrais na área portuária, onde não foram verificadas concentrações significativas de amônia não ionizável, pode estar relacionado com a granulometria do sedimento e com o percentual de matéria orgânica presente nas amostras.

Tabela 10 Efeito observado nos testes de toxicidade crônica com amostras de sedimento, entre fevereiro de 2017 e dezembro de 2023, granulometria, % de matéria orgânica e % carbonato de cálcio.

Amostras	Fevereiro de 2017	Granulometria	%MO	# CACO ₃
#Controle Descarte	Tóxico	Areia fina	0,79	0,25
#PSFS01	Tóxico	Silte médio	17,01	3,07
#PSFS02	Tóxico	Silte médio	17,1	3,26
#PSFS03	Tóxico	Silte médio	17,12	3,4
Amostras	Maio de 2017	Granulometria	%MO	#CACO ₃
#PSFS01	Tóxico	Silte médio	15,69	4,34
#PSFS02	Tóxico	Silte médio	15,46	5,89
#PSFS03	Tóxico	Silte médio	14,28	6,42
Amostras	Agosto de 2017	Granulometria	%MO	#CaCo ₃
#PSFS01	Tóxico	Silte médio	14,93	4,56
#PSFS02	Tóxico	Silte médio	13,83	4,88
#PSFS04	Tóxico	Silte médio	13,91	3,85
Amostras	Setembro de 2018	Granulometria	%MO	#CaCo₃
#PSFS01	Tóxico	Silte médio	16,63	5,46
#PSFS02	Tóxico	Silte médio	15,89	5,38
#PSFS03	Tóxico	Silte médio	12,54	5,82

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

61/132

#PSFS04	Tóxico	Silte médio	13,91	5,16
#PSFS06	Tóxico	Silte médio	12,74	5,48
#PSFS09	Tóxico	Silte médio	13,11	5
#PSFS11	Tóxico	Areia fina	3,37	3,04
Amostras	Março de 2019	Granulometria	%MO	#CaCo₃
#Controle_B	Tóxico	Silte grosso	7,32	5,5
Amostras	Setembro de 2019	Granulometria	%MO	#CaCo₃
#PSFS01	Tóxico	Silte médio	11,54	6,03
#PSFS02	Tóxico	Silte médio	11,33	6,25
#PSFS03	Tóxico	Areia média	2,63	13,28
Amostras	Março de 2020	Granulometria	%MO	#CaCo₃
#PSFS02	Tóxico	Silte médio	10,36	6,54
#PSFS03	Tóxico	Silte médio	10,82	6,41
#PSFS04	Tóxico	Silte médio	10,38	5,98
#PSFS05	Tóxico	Silte médio	8,39	4,95
#PSFS06	Tóxico	Silte médio	9,97	3,53
#PSFS12	Tóxico	Areia fina	0,41	0,99
Amostras	Setembro de 2021	Granulometria	%MO	#CaCo₃
#PSFS01	Tóxico	Silte médio	11,35	5,47
#PSFS02	Tóxico	Silte médio	11,29	7,55
Amostras	Setembro de 2022	Granulometria	%MO	#CaCo₃
#PSFS01	Tóxico	Areia fina	2,44	2,62
Amostras	Março de 2023	Granulometria	%MO	#CaCo₃
#PSFS 01	Tóxico	Areia muito fina	4,53	3,33
#PSFS 02	Tóxico	Areia muito fina	4,44	3,25
#PSFS 04	Tóxico	Areia muito fina	5,43	3,8
#PSFS 06	Tóxico	Areia muito fina	4,3	3,67
#PSFS 07	Tóxico	Areia muito fina	4,89	4,15
#PSFS 08	Tóxico	Areia muito fina	5,15	4,05
#PSFS 09	Tóxico	Areia muito fina	4,56	3,69
#PSFS 10	Tóxico	Areia muito fina	4,93	3,6
#PSFS 12	Tóxico	Silte grosso	4,04	5,38
#PSFS CD	Tóxico	Areia fina	0,33	1,13
Amostras	Dezembro de 2023	Granulometria	%MO	#CaCo3
#PSFS CB	Tóxico	Silte médio	7,29	7,39
#PSFS 04	Tóxico	Silte médio	8,02	7,55
#PSFS 05	Tóxico	Silte médio	7,32	7,33
#PSFS 06	Tóxico	Silte médio	7,77 7,56	7,33
#PSFS 09	Tóxico	Silte médio		6,6

As fontes naturais de matéria orgânica para o ambiente estuarino são oriundas do continente, através do fluxo fluvial dos sistemas de drenagem e dos manguezais. A decomposição desta matéria orgânica provoca modificações nas características físico-químicas do ambiente, especialmente no sedimento, influenciando o ciclo biogeoquímico de vários elementos, e determinando a forma na qual eles estão presentes (BERNER, E.; BERNER, R., 1996). Portanto, o potencial tóxico observado nas amostras coletadas na área portuária possivelmente é devido à interação de diferentes espécies e condições físicas e químicas. Este cenário pode resultar em atenuações ou, ao contrário, sinergismos, reduzindo

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:	
	3
FOLHA:	

62/132

ou acentuando os efeitos tóxicos individuais em eventos de remobilização do sedimento, seja de forma natural (enxurradas, correntes, tempestades) ou antrópica (dragagens).

Em relação ao ponto #Controle_Descarte, o potencial tóxico observado em fevereiro de 2017 se repetiu somente na campanha amostral de março de 2023. Neste ponto amostral o sedimento apresentou percentual de matéria orgânica baixo e granulometria entre areia fina e areia muito fina, não apresentando a relação com contaminantes, matéria orgânica ou toxicidade. A mesma condição foi encontrada no ponto #PSFS11, que acusou potencial toxicológico na campanha realizada em setembro de 2018, mas que aparentemente não apresenta contaminação química no ponto #PSFS01 em setembro de 2022 e no ponto #PSF12 (março de 2020).

No que se refere ao potencial tóxico observado no ponto #Controle_Baía (março de 2019), este esteve associado a concentração de amônia não ionizável, sendo o único registro de toxicidade observado neste local. O efeito acumulativo deste parâmetro pode estar associado à sua proximidade com a ilha e margens da baía, onde a hidrodinâmica é menor e a remobilização do sedimento pode ter sido menor para este período, favorecendo a concentração de amônia. Atenção deverá ser dada para as próximas amostragens a fim de verificar novas ocorrências de potencial toxicológico neste ponto amostral.

Não foi observada nenhuma relação de precipitação com a ecotoxicologia já que potenciais tóxicos foram observados em diferentes estações do ano, com precipitações variáveis.

4.3. INTEGRAÇÃO DOS RESULTADOS

A integração dos resultados de qualidade dos sedimentos foi realizada com os dados obtidos nas campanhas amostrais semestrais, que incluíram os dados de caracterização química e ecotoxicológica. Foram integrados os dados das seguintes campanhas: fevereiro e agosto de 2017; setembro de 2018; março e setembro de 2019; março e setembro de 2020; setembro de 2021; setembro de 2022, e março de 2023, conforme explanado a seguir.

4.3.1. TABELAS DE DECISÃO

De acordo com este método de integração, os resultados das observações de alterações na qualidade dos sedimentos podem ser demonstrados através de três intensidades, representadas por três cores diferentes: inexistente (verde), moderado (azul) e forte (amarelo). Para os resultados da campanha de fevereiro de 2017 (Figura 10), maiores evidências de degradação foram observadas nos sedimentos

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:		
	3	
FOLHA:		

63/132

dos pontos amostrais #PSFS01, #PSFS02, #PSFS03, #CTD, #CTB, #PSFS07, #PSFS10, #PSFS16, #PSFS17 e #PSFS22. Para os pontos #PSFS01, #PSFS02, #PSFS03 e #CTD, as possíveis conclusões são que certos contaminantes podem não ter sido mensurados ou existem outras condições com potencial para provocar degradação.

Já para os pontos amostrais #CTB, #PSFS07, #PSFS10, #PSFS16, #PSFS17 e #PSFS22 (Figura 10) conclui-se que as alterações não são devido à presença de compostos tóxicos no meio, podendo ser efeito de interações entre espécies e/ou outros fatores. Ressalta-se que todas as amostras em fevereiro de 2017 apresentaram, segundo este método, fortes evidências de que não existe degradação provocada por contaminação.

Para a campanha de agosto de 2017 (Figura 10), este método de integração de resultados, mostrou maiores evidências de degradação que foram observadas nos sedimentos da estação #PSFS04. A possível conclusão é de que elementos tóxicos que não foram dosados podem estar causando degradação ao meio. Os pontos amostrais #PSFS01, #PSFS02, #PSFS06, #PSFS08, #PSFS09, #10, #12, #23 e #24 também apresentaram evidências de degradação nos sedimentos. Para os pontos #PSFS01 e #PSFS02 pode-se supor que certos contaminantes podem não ter sido quantificados ou existem outras condições com potencial para provocar degradação. Já para os outros pontos amostrais, conclui-se que as alterações não são devido a presença de tóxicos no meio, podendo ser efeito de interações entre espécies e/ou outros fatores. Ressalta-se que todas as amostras apresentaram, segundo este método, fortes evidências de que não existe degradação provocada por contaminação.

Em relação a campanha amostral realizada em setembro de 2018 (Figura 10), maiores evidências de degradação foram observadas nos sedimentos dos pontos amostrais #PSFS01, #PSFS02, #PSFS03, #PSFS04, #PSFS06, #PSFS09, #PSFS11, #PSFS19, #PSFS22, #PSFS23, #PSFS25 e #CTD. Para os pontos #PSFS01, #PSFS02, #PSFS03, #PSFS04, #PSFS06, #PSFS09, #PSFS11 as possíveis conclusões são que certos contaminantes podem não ter sido dosados ou existem outras condições com potencial para provocar degradação. As substâncias tóxicas não reguladas pela legislação brasileira, provavelmente sem relação direta com a atividade portuária, e que não foram dosadas, podem estar causando a degradação ao meio.

Já para os pontos #PSFS22, #PSFS23, #PSFS25 e #CTD, conclui-se que as alterações não são devido a presença de tóxicos no meio, podendo ser efeito de interações entre espécies e/ou outros

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS SON SENGENHARIA

3

REV:

.....

FOLHA: **64/132**

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

que não existe degradação provocada por contaminação (Figura 10)

Tabela 11. Integração dos dados de qualidade dos sedimentos através de tabelas de decisão para as amostras coletadas em fevereiro e agosto de 2017 e setembro de 2018 na área de influência do Porto de

fatores. Ressalta-se que todas as amostras apresentaram, segundo este método, fortes evidências de

Tabela 11. Integração dos dados de qualidade dos sedimentos através de tabelas de decisão para as amostras coletadas em fevereiro e agosto de 2017 e setembro de 2018 na área de influência do Porto de São Francisco do Sul/SC. A legenda apresenta as três formas de observação de alterações na qualidade dos sedimentos: inexistente (verde), moderado (azul) e forte (amarelo).

	fevereiro de 2017			agosto	de 2017			setembi	ro de 201 8	3	
	CONTAMINAÇÃO	ECOTOX	BIOTA		CONTAMINAÇÃO	ECOTOX	BIOTA		CONTAMINAÇÃO	ECOTOX	BIOTA
#CB				#CB				#CB			
#PSFS01				#PSFS01				#PSFS01			
#PSFS02				#PSFS02				#PSFS02			
#PSFS03				#PSFS03				#PSFS03			
#PSFS04				#PSFS04				#PSFS04			
#PSFS05				#PSFS05				#PSFS05			
#PSFS06				#PSFS06				#PSFS06			
#PSFS07				#PSFS07				#PSFS07			
#PSFS08				#PSFS08				#PSFS08			
#PSFS09				#PSFS09				#PSFS09			
#PSFS10				#PSFS10				#PSFS10			
#PSFS11				#PSFS11				#PSFS11			
#PSFS12				#PSFS12				#PSFS12			
#PSFS13				#PSFS13				#PSFS13			
#PSFS14				#PSFS14				#PSFS14			
#PSFS15				#PSFS15				#PSFS15			
#PSFS16				#PSFS16				#PSFS16			
#PSFS17				#PSFS17				#PSFS17			
#PSFS18				#PSFS18				#PSFS18			
#PSFS19				#PSFS19				#PSFS19			
#PSFS20				#PSFS20				#PSFS20			
#PSFS21				#PSFS21				#PSFS21			
#PSFS22				#PSFS22				#PSFS22			
#PSFS23				#PSFS23				#PSFS23			
#PSFS24				#PSFS24				#PSFS24			
#PSFS25				#PSFS25				#PSFS25			
#CD				#CD				#CD			

De acordo com os resultados da campanha de março de 2019 (Tabela 16), maiores evidências de degradação foram observadas nos sedimentos dos pontos amostrais #PSFS01, #PSFS04, #CTD, #CTB, #PSFS12, #PSFS16, #PSFS21 e #PSFS23. Para o ponto amostral #CTB, as possíveis conclusões são que certos contaminantes podem não ter sido dosados ou existem outras condições com potencial para provocar degradação. Para os outros pontos amostrais, conclui-se que as alterações não são devido a presença de tóxicos no meio, podendo ser efeito de interações entre espécies e/ou outros fatores. Ressalta-se que todas as amostras apresentaram, segundo este método, fortes evidências de que não existe degradação provocada por contaminação.

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:	
	3
FOLHA:	

65/132

Em relação a campanha de setembro de 2019, foram observadas, evidências de degradação nos pontos amostrais #PSFS01, #PSFS02, #PSFS03, #PSFS07, #PSFS08, #PSFS13 e #CTD (Tabela 12). Para a amostra coletada no ponto #PSFS01, pode-se sugerir que ocorra degradação induzida por contaminação. No ponto amostral #PSFS02, observa-se que possivelmente elementos tóxicos que não foram dosados possam estar causando degradação ao meio. Para o ponto amostral #PSFS03, a conclusão é de que certos contaminantes podem não ter sido dosados ou existem outras condições com potencial para provocar degradação. Já para os pontos #PSFS07 e #PSFS08, possivelmente a degradação observada seja relacionada a contaminantes que não estão biodisponíveis (Tabela 12). Já para os pontos amostrais #PSFS13 e #CTD (Tabela 16) a alteração observada não é devida a presença de tóxicos no meio, podendo ser efeito de interações entre espécies e/ou outros fatores.

A campanha de março de 2020 apresenta cinco possíveis evidências de degradação para as amostras que apresentaram alterações. Para os pontos #PSFS02, #PSFS04 e #PSFS06 as possíveis conclusões são que certos contaminantes podem não ter sido dosados ou existem outras condições com potencial para provocar degradação (Tabela 16). Para os pontos amostrais #PSFS03 e #PSFS05, é possível que elementos tóxicos que não foram dosados podem estar causando degradação ao meio ou existem outras condições com potencial para provocar degradação. Para os pontos amostrais #PSFS01, #PSFS07, #PSFS08, #PSFS09, #PSFS12, #CTB, #PSFS19, #PSFS21, #PSFS23 e #PSFS24, conclui-se que as alterações não são devido a presença de tóxicos no meio, podendo ser efeito de interações entre espécies e/ou outros fatores. Já para os pontos #PSFS13, #PSFS14, #PSFS15, #PSFS17, #PSFS18 e #PSFS20, as alterações observadas possivelmente estão relacionadas a produtos tóxicos não estão biodisponíveis ou alterações na fauna bentônica não são devidas a presença de contaminantes no meio (Tabela 12).

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS SNESSEN ENGENHARIA

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

FOLHA:

REV:

66/132

3

Tabela 12. Integração dos dados de qualidade dos sedimentos através de tabelas de decisão para as amostras coletadas em março e setembro de 2019 e março de 2020 na área de influência do Porto de São Francisco do Sul/SC.

	março de 2019			setembro de 2019			março de 2020				
	CONTAMINAÇÃO	ЕСОТОХ	BIOTA		CONTAMINAÇÃO	ЕСОТОХ	BIOTA		CONTAMINAÇÃO	ЕСОТОХ	BIOTA
#CB				#CB				#CB			
#PSFS01				#PSFS01				#PSFS01			
#PSFS02				#PSFS02				#PSFS02			
#PSFS03				#PSFS03				#PSFS03			
#PSFS04				#PSFS04				#PSFS04			
#PSFS05				#PSFS05				#PSFS05			
#PSFS06				#PSFS06				#PSFS06			
#PSFS07				#PSFS07				#PSFS07			
#PSFS08				#PSFS08				#PSFS08			
#PSFS09				#PSFS09				#PSFS09			
#PSFS10				#PSFS10				#PSFS10			
#PSFS11				#PSFS11				#PSFS11			
#PSFS12				#PSFS12				#PSFS12			
#PSFS13				#PSFS13				#PSFS13			
#PSFS14				#PSFS14				#PSFS14			
#PSFS15				#PSFS15				#PSFS15			
#PSFS16				#PSFS16				#PSFS16			
#PSFS17				#PSFS17				#PSFS17			
#PSFS18				#PSFS18				#PSFS18			
#PSFS19				#PSFS19				#PSFS19			
#PSFS20				#PSFS20				#PSFS20			
#PSFS21				#PSFS21				#PSFS21			
#PSFS22				#PSFS22				#PSFS22			
#PSFS23				#PSFS23				#PSFS23			
#PSFS24				#PSFS24				#PSFS24			
#PSFS25				#PSFS25				#PSFS25			
#CD				#CD				#CD			

Alterações foram observadas na campanha amostral de setembro de 2020 para os pontos amostrais #PSFS01, #PSFS06, #PSFS18, #PSFS20, #PSFS21, #PSFS22, #PSFS23, #PSFS24, #PSFS25 e #CTD. Para os pontos amostrais #PSFS23 e #PSFS24, as possíveis conclusões são que os produtos tóxicos não estão biodisponíveis ou alterações nos organismos bentônicos não são devidas a presença de contaminantes no meio. Já para os outros pontos amostrais, conclui-se que as alterações não são devido a presença de tóxicos no meio, podendo ser efeito de interações entre espécies e/ou outros fatores (Tabela 13).

De acordo com os resultados da campanha de setembro de 2021 (Tabela 13), foram observadas evidências de degradação na maioria dos pontos amostrais. Para o ponto #PSFS01, conclui-se que possivelmente os produtos químicos tóxicos estão impactando o ambiente, mas em um nível que ainda

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

REV:		
	3	
FOLHA:		

67/132

não se fez sentir nas comunidades bentônicas. Já para o ponto #PSFS02, é possível que elementos tóxicos que não foram dosados podem estar causando degradação ao meio. E para o ponto amostral #PSFS10, possivelmente os contaminantes não estejam biodisponíveis. Para o restante dos pontos amostrais, conclui-se que as alterações não são devidas a presença de tóxicos no meio, podendo ser efeito de interações entre espécies e/ou outros fatores (Tabela 13).

Para a campanha de setembro de 2022 (Tabela 13), as alterações observadas na maioria dos pontos amostrais possivelmente não são devido a presença de tóxicos no meio, podendo ser efeito de interações entre espécies e/ou outros fatores. Ressalta-se que todas as amostras apresentaram, segundo este método, fortes evidências de que não existe degradação provocada por contaminação nesta campanha amostral.

Em relação a campanha de março de 2023 (Tabela 14), foram observadas evidências de degradação principalmente nos pontos amostrais na área interna da dársena do Porto de São Francisco do Sul, possivelmente devido a presença de tóxicos no meio que não foram dosados ou por efeito de interações entre espécies e/ou outros fatores.

	NÚMERO INFRAS: IFS-2412-220-D-RL-00001	INFRAS	MOO. DA
SÃO FRANCISCO DO SUL	NÚMERO CLIENTE:	ENGENHARIA	INFRASENG.COM
PROJETO BÁSICO DRAGAGEM DE MANUT	ENÇÃO	REV: 3	
SCPAR – PORTO DE SÃ RELATÓRIO DE DRAGA		FOLHA: 68/132	

Tabela 13 Integração dos dados de qualidade dos sedimentos através de tabelas de decisão para as amostras coletadas em setembro de 2020, setembro de 2021 e setembro de 2022 na área de influência do Porto de São Francisco do Sul/SC.

	setembro de 2020			setembro de 2021			setembr	o de 2022	2		
	CONTAMINAÇÃO	ECOTOX	BIOTA		CONTAMINAÇÃO	ЕСОТОХ	BIOTA		CONTAMINAÇÃO	ECOTOX	BIOTA
#CB				#CB				#CB			
#PSFS01				#PSFS01				#PSFS01			
#PSFS02				#PSFS02				#PSFS02			
#PSFS03				#PSFS03				#PSFS03			
#PSFS04				#PSFS04				#PSFS04			
#PSFS05				#PSFS05				#PSFS05			
#PSFS06				#PSFS06				#PSFS06			
#PSFS07				#PSFS07				#PSFS07			
#PSFS08				#PSFS08				#PSFS08			
#PSFS09				#PSFS09				#PSFS09			
#PSFS10				#PSFS10				#PSFS10			
#PSFS11				#PSFS11				#PSFS11			
#PSFS12				#PSFS12				#PSFS12			
#PSFS13				#PSFS13				#PSFS13			
#PSFS14				#PSFS14				#PSFS14			
#PSFS15				#PSFS15				#PSFS15			
#PSFS16				#PSFS16				#PSFS16			
#PSFS17				#PSFS17				#PSFS17			
#PSFS18				#PSFS18				#PSFS18			
#PSFS19				#PSFS19				#PSFS19			
#PSFS20				#PSFS20				#PSFS20			
#PSFS21				#PSFS21				#PSFS21			
#PSFS22				#PSFS22				#PSFS22			
#PSFS23				#PSFS23				#PSFS23			
#PSFS24				#PSFS24				#PSFS24			
#PSFS25				#PSFS25				#PSFS25			
#CD				#CD				#CD			

Tabela 14 Integração dos dados de qualidade dos sedimentos através de tabelas de decisão para as amostras coletadas em março de 2023 na área de influência do Porto de São Francisco do Sul/SC.

	CONTAMINAÇÃO	ECOTOX	BIOTA	POSSÍVEIS CONCLUSÕES
#СТВ				Alteração não é devida a presença de tóxicos no meio, podendo ser efeito de interações entre espécies e/ou outros fatores.
#1				Tóxicos que não foram dosados podem estar causando degradação ao meio.
#2				Certos contaminantes podem não ter sido dosados ou existem outras condições com potencial para provocar degradação.
#3				Alteração não é devida a presença de tóxicos no meio, podendo ser efeito de interações entre espécies e/ou outros fatores.
#4				Certos contaminantes podem não ter sido dosados ou existem outras condições com potencial para provocar degradação.
#5				Forte evidência de que não existe degradação provocada por contaminação.
#6				Tóxicos que não foram dosados podem estar causando degradação ao meio.
#7				Certos contaminantes podem não ter sido dosados ou existem outras condições com potencial para provocar degradação.
#8				Certos contaminantes podem não ter sido dosados ou existem outras condições com potencial para provocar degradação.
#9				Tóxicos que não foram dosados podem estar causando degradação ao meio.

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

ΕN

INFRAS OF THE PROPERTY OF THE

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

FOLHA:

69/132

3

	CONTAMINAÇÃO	ЕСОТОХ	BIOTA	POSSÍVEIS CONCLUSÕES
#10				Tóxicos que não foram dosados podem estar causando degradação ao meio.
#11				Forte evidência de que não existe degradação provocada por contaminação.
#12				Certos contaminantes podem não ter sido dosados ou existem outras condições com potencial para provocar degradação.
#13				Alteração não é devida a presença de tóxicos no meio, podendo ser efeito de interações entre espécies e/ou outros fatores.
#14				Forte evidência de que não existe degradação provocada por contaminação.
#15				Forte evidência de que não existe degradação provocada por contaminação.
#16				Forte evidência de que não existe degradação provocada por contaminação.
#17				Forte evidência de que não existe degradação provocada por contaminação.
#18				Alteração não é devida a presença de tóxicos no meio, podendo ser efeito de interações entre espécies e/ou outros fatores.
#19				Alteração não é devida a presença de tóxicos no meio, podendo ser efeito de interações entre espécies e/ou outros fatores.
#20				Alteração não é devida a presença de tóxicos no meio, podendo ser efeito de interações entre espécies e/ou outros fatores.
#21				Forte evidência de que não existe degradação provocada por contaminação.
#22				Alteração não é devida a presença de tóxicos no meio, podendo ser efeito de interações entre espécies e/ou outros fatores.
#23				Alteração não é devida a presença de tóxicos no meio, podendo ser efeito de interações entre espécies e/ou outros fatores.
#24				Forte evidência de que não existe degradação provocada por contaminação.
#25				Alteração não é devida a presença de tóxicos no meio, podendo ser efeito de interações entre espécies e/ou outros fatores.
#CTD				Certos contaminantes podem não ter sido dosados ou existem outras condições com potencial para provocar degradação.

Na aplicação da Tríade da Qualidade de Sedimentos, segundo a interpretação das tabelas de decisão propostas por Chapman (1990), as alterações encontradas na baía da Babitonga e região costeira adjacente à sua desembocadura, na sua maioria não são devido à presença de elementos tóxicos no meio, podendo ser efeito de interações entre espécies e/ou outros fatores. Ressalta-se que as amostras apresentaram, segundo este método, fortes evidências de que não existe degradação provocada por contaminação. Fato este confirmado pelas análises químicas realizadas nas amostras de sedimentos, onde as maiores concentrações dos compostos avaliados não ultrapassam os limites estabelecidos pela legislação que norteia os parâmetros de qualidade (Resolução CONAMA No 454/2012) Águas Salinas/Salobras). Por outro lado, a caracterização através da comunidade bentônica apresentou índices de ambiente degradado, podendo ser efeito de interações entre espécies e ou outros fatores não verificados. De modo geral, os resultados obtidos através das tabelas de decisão

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

REV:	
	3
FOLHA:	

70/132

mostram concordância com os resultados obtidos nas análises químicas, granulométricas e ecotoxicológicas, sugerindo que as características naturais do meio estão participando efetivamente da estruturação da comunidade bentônica.

4.4. CONSIDERAÇÕES FINAIS

A análise da série histórica de dados da qualidade de sedimento na Baía da Babitonga, obtida entre fevereiro de 2017 e dezembro de 2023, descreve as oscilações naturais de um local de alta circulação estuarina. Neste ambiente são movimentados em torno de 7,8 x 108 m³ de água, com um tempo de residência de aproximadamente 237 dias (DNIT/IME 2004), regidos pela dinâmica das marés e por forçantes meteorológicas. Em relação aos resultados obtidos nas análises químicas, pode-se concluir que os sedimentos superficiais coletados na área de influência do Porto de São Francisco do Sul, na maioria dos meses monitorados, apresentam boa qualidade ambiental, já que atendem integralmente o que estabelece a Resolução CONAMA Nº 454/2012 para águas salinas/salobras considerando os limites admitidos para o Nível 1. As campanhas em que as concentrações de metais excederam o limite mais conservativo, foram pontuais, com concentrações mais baixas que o limite de Nível 2.

Em relação aos compostos orgânicos somente o fósforo excedeu o valor de alerta em algumas campanhas amostrais. Este panorama indica que os sedimentos apresentaram boa qualidade ambiental já que não há indícios que relacionem problemas crônicos oriundos à atividade portuária no entorno do Porto de São Francisco do Sul. Nota-se também que a baía da Babitonga possui grande capacidade de recuperação visto a diminuição das concentrações de metais observadas no período monitorado entre 2017 e 2023 quando relacionados com estudos anteriores.

Em relação a granulometria, se observa que as frações silte e argila predominaram na área interna da baía da Babitonga, enquanto na foz da baía da Babitonga e na plataforma costeira adjacente, onde está localizado o bota-fora e canal de acesso externo, as frações areia fina e muito fina foram mais representativas. Na desembocadura da baía são registrados sedimentos de maior classe granulométrica, como areia média e areia grossa. Os maiores percentuais de matéria orgânica de forma geral ocorreram nas amostras com grãos de menor tamanho, sendo observados nos pontos internos da Baía, mais próximos à região portuária. O mesmo padrão de distribuição foi observado

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR - PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV: **3**

FOLHA:

71/132

para os carbonatos, porém com incrementos registrados na região de estrangulamento do canal, ocasionado pela presença de conchas calcáreas. Considerando um ciclo anual de campanhas na área de influência do Porto de São Francisco, é possível notar que nas estações amostrais situadas no canal de acesso e na plataforma continental a textura dos sedimentos sofre poucas variações sazonais. As estações amostrais ao entorno da área portuária, no interior da baía da Babitonga apresentam maiores variações sazonais, com um incremento de sedimentos finos no período de primavera e predominância no verão. No outono este sedimento fino é remobilizado chegando aos menores percentuais no período de inverno, estando relacionado com as condições climáticas mais severas que causam aumento de entradas de frentes frias, tempestades e ressacas, interferindo na hidrodinâmica local.

Em geral todos os indicadores sedimentológicos apresentaram bons resultados, atestando boa qualidade ambiental, superando o esperado para ambientes expostos à efluentes de diversas atividades econômicas, como indústrias metalúrgicas, têxteis, estaleiros, portos e até mesmo residências e comércios, tendo em vista toda a potencialidade sinérgica de impactos existente em toda a bacia de drenagem do complexo estuarino.

No monitoramento ecotoxicológico dos sedimentos, se observou ao longo das campanhas amostrais que, a maioria dos pontos apresentou potencial de toxicidade inexistente, e nos pontos em que foi observado potencial toxicológico, não houve relação com os compostos químicos analisados. Uma clara relação entre as variáveis toxicológicas, granulométricas e conteúdo de matéria orgânica foi observada no monitoramento. Além disso, ocorre a interação de diferentes espécies e as condições físicas e químicas, com contribuições de contaminantes provenientes das atividades industriais da região e dos aportes fluviais no ambiente estuarino monitorado. Desta interação podem resultar atenuações ou, ao contrário, sinergismos, reduzindo ou acentuando os efeitos tóxicos individuais em eventos de remobilização do sedimento, seja de forma natural (enxurradas, correntes, tempestades) ou antrópica (dragagens).

Em relação aos dados do monitoramento da comunidade da macrofauna bentônica de fundo inconsolidado é possível inferir que os maiores valores de riqueza e abundância de macrofauna ocorreram nos pontos localizados no canal de acesso e plataforma adjacente à desembocadura da

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV: **3**

FOLHA:

72/132

baía (ponto controle descarte), enquanto os menores valores ocorreram nos pontos da região do Porto, bota-fora e controle Babitonga. O crustáceo Amphipoda foi o organismo mais abundante ao longo de todo o monitoramento, seguido pelo poliqueta Capitelidade no ano de 2023. Esse resultado difere do encontrado por outros estudos na baia da Babitonga provavelmente devido a diferença na localização dos pontos amostrais, esforço amostral e variações nas condições ambientais. Observou-se uma tendência de maior diversidade onde há maior atuação da água salgada e menor influência da atividade portuária. A comunidade da macrofauna se distribui em manchas, por isso foi possível verificar valores máximos nos indicadores em pontos fora do padrão observado. Foi identificado um indivíduo da espécie exótica *Isognomon bicolor*, que pode ter ocorrido devido ao seu desprendimento de um substrato consolidado próximo, uma vez que a espécie já foi identificada nas estruturas rígidas do entorno.

Na integração dos dados de qualidade dos sedimentos através da interpretação das tabelas de decisão e diagramas de pizza, métodos propostos pela Tríade da Qualidade de Sedimentos, observou-se fortes evidências de que não existe degradação provocada por contaminação química nos sedimentos da área estudada. De modo geral, os resultados obtidos através das tabelas de decisão e gráficos pizza mostram concordância com os resultados obtidos nas análises químicas, granulométricas e ecotoxicológicas. Em relação aos dados da comunidade bentônica, os métodos apresentaram evidências de um ambiente alterado. Entretanto, estes métodos não consideram as alterações da comunidade bentônica em relação a sazonalidade, espacialização, as interações entre espécies e as diversas alterações de bentos em resposta à fatores ambientais, como granulometria, percentuais de matéria orgânica, etc. Assim, o compartimento bentônico, por ser complexo, pode ter superestimado o grau de alteração dos organismos bênticos nos métodos analisados.

Sintetizando os resultados obtidos em 2023 de cada metodologia aplicada para avaliar a qualidade dos sedimentos, ecotoxicidade e a macrofauna inconsolidada, temos as sequintes conclusões:

 Nas coletas realizadas entre março e dezembro de 2023, a caracterização textural dos sedimentos apresentou particularidades entre as quatro coletas realizadas, principalmente nas estações amostrais situadas próximas às instalações portuárias e no canal interno. Sendo que as campanhas do primeiro semestre apresentaram maior influência de sedimentos arenosos

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:		
	3	
FOLHA:		

73/132

além dos sedimentos finos, já no segundo semestre os sedimentos finos (silte e argila) foram expressivos e predominantes;

- As estações amostrais situadas na região do canal da Baía apresentam uma tendência de composição de sedimentos arenosos compostos por classes granulométricas superiores à areia média;
- Considerando que cada campanha realizada é marcada pelo final de um ciclo sazonal, é
 possível notar que ao final do período de primavera e de verão, as estações amostrais situadas
 no interior da Baía da Babitonga são representadas principalmente por sedimentos finos, já nos
 períodos de outono e inverno as classes arenosas ganham mais representatividade;
- As estações amostrais situadas na região de desembocadura da baía até o canal externo (#14
 a #17) apresentaram granulometrias similares entre as campanhas realizadas, com
 predominância das classes de areia média e areia grossa, sendo a região que apresenta maior
 tamanho médio de grão;
- Nas estações amostrais situadas na região de descarte, na plataforma continental adjacente (#18 a #25), as frações de areia fina, seguida da classe de areia média, foram as classes predominantes em todas as campanhas realizadas em 2023, com exceção da campanha realizada em setembro, onde a areia média foi mais representativa, seguida de areia grossa;
- Os maiores percentuais de matéria orgânica de forma geral ocorreram nas amostras onde os sedimentos finos foram predominantes (silte e argila), principalmente nas estações amostrais internas da Baía, mais próximos à região portuária. O mesmo padrão de distribuição foi observado para os carbonatos, porém com incrementos registrados na região de estrangulamento do canal, onde a granulometria de maior tamanho médio de grão foi registrada, relacionada com a presença de conchas calcáreas;
- A partir dos resultados dos parâmetros químicos obtidos entre as campanhas realizadas em março e dezembro de 2023, pode-se concluir que os sedimentos superficiais coletados na área de influência do Porto de São Francisco do Sul, apresentam boa qualidade ambiental, já que atenderam integralmente o que estabelece a Resolução CONAMA Nº 454/2012 para águas salinas/salobras considerando os limites admitidos para o Nível 1, limite mais conservativo estabelecido para os metais e aos valores de alerta estabelecidos para os nutrientes;
- Em análise de todas as campanhas realizadas desde fevereiro de 2017 até dezembro de 2023, mesmo nas estações amostrais em que dois metais, o arsênio em março de 2020 e o cádmio em setembro de 2020, ultrapassaram o limite de Nível 1, foram pontuais, relativamente baixos

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR - PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:		
	3	
FOLHA:		

74/132

em consideração ao limite de Nível 2 e não foram persistentes nas demais campanhas. Este panorama indica que não há indícios que relacionem problemas crônicos oriundos à atividade portuária aos entornos do Porto de São Francisco do Sul;

- Em relação às concentrações de fósforo que ultrapassaram o valor de alerta, nas campanhas realizadas em dezembro de 2019, março de 2020 e em junho 2020, também foram pontuais. Pelo histórico do presente monitoramento é possível afirmar que não se trata de um problema crônico, mas possivelmente relacionado às oscilações ambientais inerentes ao complexo estuarino, provindo de fontes alóctones, evidenciado pela localização das estações amostrais em que excedeu o valor de alerta (canal externo e área de descarte), de modo que nas estações amostrais situadas nas instalações portuárias as concentrações deste nutriente foram baixas, porém desta forma torna-se necessária a manutenção do monitoramento;
- No monitoramento da qualidade do sedimento dos últimos dois anos, se pode concluir que o
 potencial tóxico observado nos testes de toxicidade possivelmente se origina de contaminação
 orgânica dos sedimentos, sendo a maior parte dos resultados observados na região próxima
 às estruturas portuárias do Porto de São Francisco do Sul. Foi observada uma correlação entre
 as variáveis toxicológicas, granulométricas e o conteúdo de matéria orgânica no
 monitoramento;
- Os crustáceos Amphipoda e Copepoda foram os organismos mais abundantes ao longo do monitoramento. Esse resultado difere do encontrado por outros estudos na baia da Babitonga provavelmente devido a diferença na localização dos pontos amostrais, esforço amostral e variações nas condições ambientais;
- O fator campanha apresentou diferença significativa. A campanha de setembro/2020 apresentou os maiores valores de riqueza e abundância, principalmente devido à contribuição de Copepoda. A partir do resultado do Subprograma de Qualidade do Sedimento, observa-se que neste período o sedimento foi mais grosseiro, provavelmente em resposta a um período chuvoso. Segundo a bibliografia, a reprodução copépodes pode apresentar picos durante as estações pós e pré-chuvosas;
- Os fatores ponto e zona apresentaram diferença significativa. Houve uma tendência de aumento nos valores médios dos indicadores dos pontos coletados onde há maior influência da água doce, para os pontos com maior influência da água salgada. A diversidade tende a crescer da água doce para água salgada porque as espécies dessas áreas são mais adaptadas às oscilações dos parâmetros físico-químicos. Também deve-se considerar que os organismos

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:	
	3
FOLHA:	

75/132

que habitam a zona #PSFS, #CTD e #BF podem sofrer as influências negativas associadas as atividades portuárias. A comunidade da macrofauna se distribui em manchas, por isso foi possível verificar valores máximos nos indicadores em pontos fora do padrão observado;

- Os menores valores de abundância e riqueza ocorreram nas zonas #CTD e #BF. O descarte
 de material dragado tem o potencial de afetar os animais dentro do bota-fora e nas áreas
 adjacentes;
- Foi identificado um indivíduo da espécie exótica Isognomon bicolor que, devido ao seu hábito de vida, pode ter desprendido de um substrato consolidado próximo, uma vez que a espécie já foi identificada nas estruturas rígidas do entorno (vide Subprograma de Monitoramento da Macrofauna Bentônica de Fundo Consolidado).
- O presente programa de monitoramento da comunidade bentônica tem mostrado efetividade.
 Sugere-se que o mesmo mantenha continuidade, uma vez que a comunidade da macrofauna bentônica é considerada como bioindicadora. Portanto, em caso de impactos ao ambiente, a avaliação desse grupo de organismos se mostra como uma ferramenta eficiente.
- O método de integração da tríade de qualidade dos sedimentos se mostrou didático e condizente com os resultados obtidos através da caracterização química, granulométrica e ecotoxicológica. Em relação aos dados da comunidade bentônica, ressalta-se que o conhecimento ecológico e fisiológico das associações faunísticas existentes na área de estudo pode estabelecer condições de referência futura com maior segurança e sem uma superestimação dos resultados.

Considera-se por fim, que o programa de qualidade dos sedimentos mostrou-se efetivo através dos subprogramas executados. Os resultados dos monitoramentos aplicados na área de influência do Porto de São Francisco demonstram que não há indícios de que a atividade portuária implique em mudanças da qualidade dos sedimentos. Indicam também que a baía da Babitonga possui grande capacidade de recuperação e que ao longo dos anos monitorados os sedimentos apresentaram boa qualidade.

5. BOTA-FORA

A área designada para o descarte de sedimentos para as atividades de dragagem de manutenção do Porto de São Francisco do Sul, conhecida como Bota-Fora Alfa, possui licenciamento concedido pelo

IBAMA, conforme registrado no Parecer Técnico IBAMA Nº 02026.000054/2015-05 NLA/SC/IBAMA. Esta área está situada aproximadamente a 23 km do Porto de São Francisco do Sul, na região costeira adjacente à baía da Babitonga, e a cerca de 5 km da linha de costa.

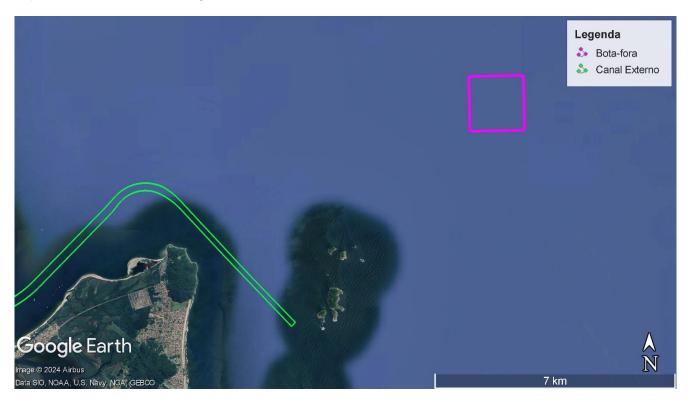


Figura 29. Área marinha de descarte de sedimentos (Bota-Fora Alfa).

As profundidades na área variam entre 19,2 metros e 23,3 metros, como ilustrado na Figura 30, com os vértices descritos na Tabela 15 a seguir.

Tabela 15. Localização dos vértices do Bota-fora

Vértices	X (E)	Y (N)
B1	755522.00	7108650.00
B2	757122.00	7108650.00
В3	755522.00	7107050.00
B4	757122.00	7107050.00

	NÚMERO INFRAS: IFS-2412-220-D-RL-00001	INFRAS 8
SÃO FRANCISCO DO SUL	NÚMERO CLIENTE:	INFRAS ENGENHARIA
PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO		REV: 3
SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM		FOLHA: 77/132

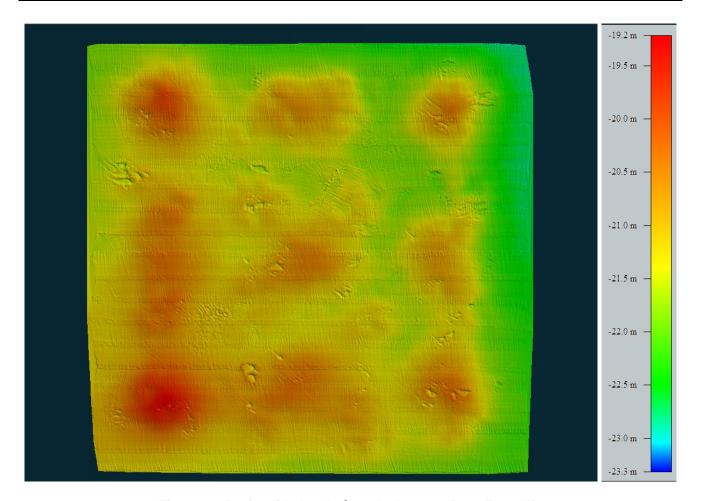


Figura 30. Profundidades da área de descarte Bota-Fora Alfa

O levantamento batimétrico foi conduzido em 17 de dezembro de 2023 pela empresa HIDROTOPO CONSULTORIA E PROJETOS LTDA., com emprego de sistema multifeixe com frequência de 200 kHz, como pode ser visualizado no arquivo de referência [5].

As distâncias médias para transporte entre cada uma das áreas de dragagem e o bota-fora foram medidas a partir do ponto central de cada uma delas, considerando a navegação sendo realizada ao longo do canal de acesso e posteriormente guinando em direção ao bota-fora, sendo:

Dársena e Bacia de Evolução: 31,6 km;

Canal Interno: 26,7 km;

• Canal Externo: 17,0 km.

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV: **3**

FOLHA:

78/132

O descarte do material dragado na área marinha será realizado através da abertura da cisterna de uma draga autotransportadora (TSHD) sobre a área de bota-fora, conforme detalhado no capítulo de Equipamentos e Técnicas de Dragagem e Descarte.

6. PROJETO GEOMÉTRICO DE DRAGAGEM

6.1. TALUDES E TOLERÂNCIA VERTICAL

A formação dos taludes naturais durante as atividades de dragagem está relacionada principalmente com a natureza do fundo que será dragado. Conforme apresentado na Seção 4 e em sondagens realizadas previamente, o leito das regiões que serão dragadas é constituída por grande representatividade de sedimentos finos (silte e argila), mas também, percentuais consideráveis de todas as classes granulométricas de areias. Sendo assim, considerou-se a formação de um talude natural de 1V:6H em conformidade com dragagens anteriores realizadas na região.

Já a tolerância vertical de dragagem está relacionada com o equipamento utilizado para dragagem. Como no caso da presente dragagem será considerada a execução por uma draga autotransportadora de sucção foi considerada uma tolerância vertical de 50 cm devido a precisão do equipamento.

6.2. ÁREAS DE DRAGAGEM

Para melhor entendimento, a área a ser dragada foi subdividida em três áreas principais conforme áreas fornecidas pelo Porto de São Francisco do Sul, denominadas de: Dársena e Bacia de Evolução, Canal Interno e Canal Externo, conforme apresentado na figura a seguir.

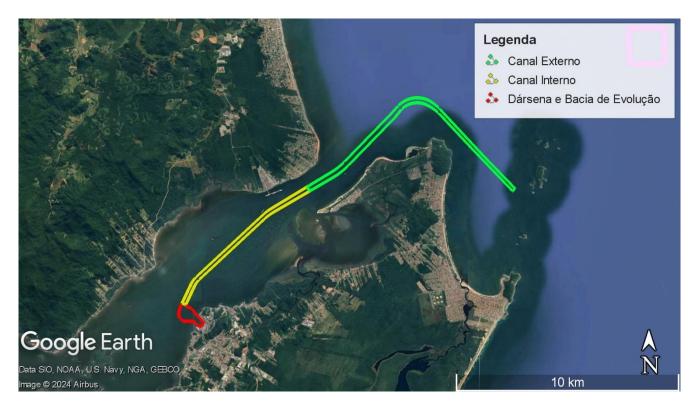


Figura 31. As áreas de dragagem do Canal externo, Canal interno e Dársena e Bacia de Evolução

6.2.1. DÁRSENA E BACIA DE EVOLUÇÃO

A área da Dársena e Bacia de evolução, conforme mostrado na Figura 32, representa a região mais próxima do Porto de São Francisco do Sul, englobando a dársena, bacia de evolução e berços do porto.

Figura 32. Poligonal Dársena e Bacia de Evolução.

6.2.2. CANAL INTERNO

O Canal Interno representa o trecho mais abrigado do canal de acesso ao Porto de São Francisco do Sul, delimitado à oeste pela bacia de evolução e à direita pelo início do Canal Externo, conforme representado na Figura 33.

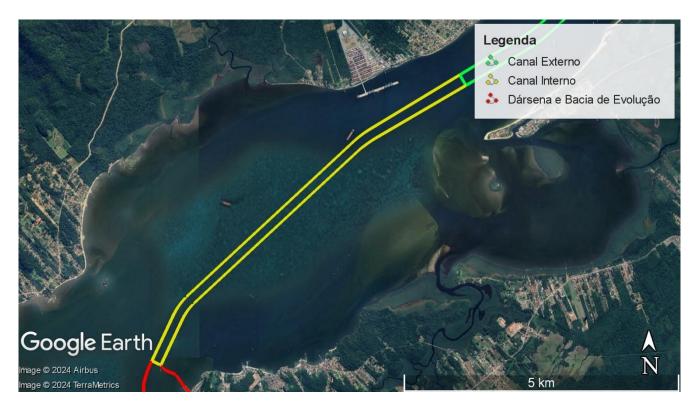


Figura 33. Levantamento Batimétrico da área de dragagem do Canal Interno

6.2.3. CANAL EXTERNO

O Canal Externo representa a área mais exposta do Canal de Acesso, delimitado a oeste pelo Canal de Acesso Interno, conforme representado na Figura 34.

	NÚMERO INFRAS: IFS-2412-220-D-RL-00001	INFRAS
SÃO FRANCISCO DO SUL	NÚMERO CLIENTE:	INFRAS ENGENHARIA
PROJETO BÁSICO		REV:
DRAGAGEM DE MANUT SCPAR – PORTO DE SÃ	<u> </u>	FOLHA:
REI ATÓRIO DE DRAGA		82/132

Figura 34. Levantamento Batimétrico da área de dragagem do Canal Externo

6.3. RESUMO DAS GEOMETRIAS

A Tabela 16 abaixo apresentam um resumo dos critérios adotados no projeto de dragagem do Porto de São Francisco do Sul, já a Figura 35, uma seção esquemática representativa do projeto.

Tabela 16. Resumo dos critérios adotados para a dragagem de manutenção do Canal Externo, Canal Interno, Dársena e Bacia de Evolução

CRITÉRIO	VALOR ADOTADO			
Canal Externo, Canal Interno, Dársena e Bacia de Evolução				
Profundidade da Soleira de Dragagem	-14,0 m DHN			
Largura da Soleira de Dragagem	Variável			
Tolerância Vertical de Dragagem	0,50 m			
Taludes	1V:6H			

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV: **3**FOLHA:

83/132

CRITÉRIO	VALOR ADOTADO		
Canal Externo, Canal Interno, Dársena e Bacia de Evolução			
Disposição do Material Dragado	P1:755522.00m E / 7108650.00m S P2:757122.00m E / 7108650.00m S P3:755522.00m E 7107050.00m S P4:757122.00m E / 7107050.00m S (UTM Sirgas 2000 22S)		

Figura 35. Seção esquemática representativa do projeto de dragagem do Canal Externo, Canal Interno, Dársena e Bacia de Evolução

7. VOLUMES A SEREM DRAGADOS

7.1. METODOLOGIA EMPREGADA

Todo o processamento dos dados e a obtenção dos resultados dos quantitativos de volume de dragagem foram realizados através do uso do software AutoCAD Civil 3D. Este software permite a realização de comparações entre diferentes superfícies projetadas, assim como a confecção de seções transversais ao longo de trechos, fornecendo quantitativos de volumes de dragagem. Com o método de cálculo de volume por seções, as médias das áreas das seções transversais adjacentes são multiplicadas pela distância entre elas.

Para o cálculo dos volumes as seções foram dispostas alinhamentos distintos, sendo para o Canal Externo as Seções das estacas 1 a 617, para o Canal Interno as estacas 1 a 385 e para a Dársena e

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:	
	3
FOLHA:	

84/132

Bacia de Evolução as estacas 1 a 70. Este estaqueamento é realizado com distância de 20 metros entre estacas, assim como a distância padrão entre suas respectivas seções. Estas seções podem ser visualizadas no documento de referência [6].

7.2. DADOS UTILIZADOS

Como bases para a comparação dos volumes de solo a serem removidos no processo de dragagem de manutenção do terminal do Porto de São Francisco do Sul foram utilizados os seguintes dados. Destaca-se que todos os levantamentos batimétricos foram realizados pela empresa HIDROTOPO CONSULTORIA E PROJETOS LTDA.

- Levantamento Batimétrico Multifeixe executado na área da Bacia de Evolução entre os dias
 27 e 31 de março de 2024 (Documento de referência [1]);
- Levantamento Batimétrico Multifeixe executado na área da Dársena entre os dias 27 de março
 e 4 de abril de 2024 (Documento de referência [4]);
- Levantamento Batimétrico Multifeixe executado no Canal Interno no dia 27 de março de 2024
 (Documento de referência [2]);
- Levantamento Batimétrico Multifeixe executado no Canal Externo entre os dias 27 e 28 de março de 2024 (Documento de referência [3]);
- > Geometria das áreas a serem dragadas (Documento de referência [8]).

A Figura 36 abaixo mostra a áreas total de levantamento das batimetrias realizadas.

	NÚMERO INFRAS: IFS-2412-220-D-RL-00001	INFRAS 8
SÃO FRANCISCO DO SUL	NÚMERO CLIENTE:	INFRAS ENGENHARIA
PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO		REV: 3
SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM		FOLHA: 85/132

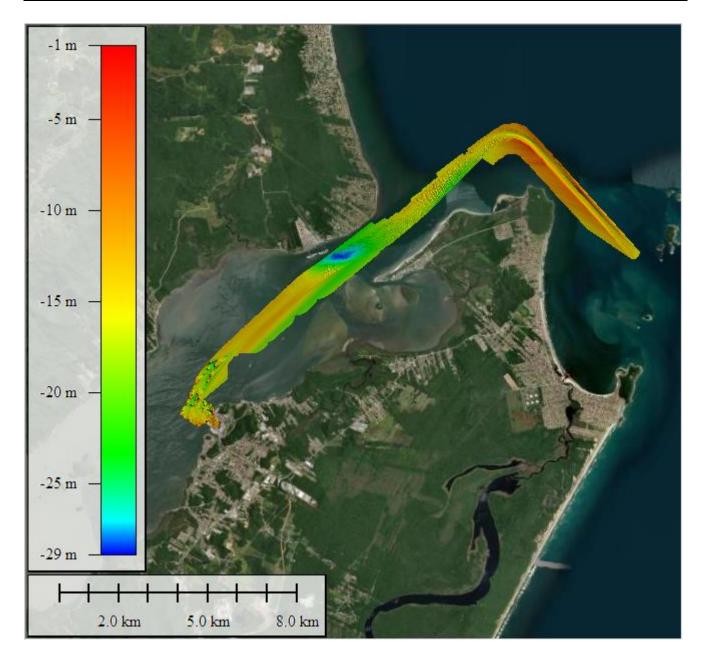


Figura 36. Região coberta pelas batimetrias realizadas.

A estimativa do volume a ser dragado foi realizada considerando a configuração geométrica atual do sistema aquaviário proposto, como ilustrado na Figura 31.

Para a tolerância vertical de sobredragagem, foi adotado o valor de 0,5 metros, e o talude de estabilidade de dragagem foi estabelecido com uma razão de 1:6 para toda a área a ser dragada.

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:
3
FOLHA:
86/132

As cotas de dragagem estabelecidas são de -14 metros (DHN) para toda a área do sistema aquaviário, incluindo o canal externo, canal interno, bacia de evolução e bacia de evolução.

Para a estimativa do volume de sedimentos a serem dragados, foram definidas seções de dragagem espaçadas a cada 20 metros entre si, conforme apresentado nos documentos de referência [6], que acompanha este relatório.

7.3. RESULTADOS

Nas seções a seguir são apresentados os cálculos e quantitativos de volume para dragagem em cada uma das áreas.

7.3.1. DÁRSENA E BACIA DE EVOLUÇÃO

Para a Dársena e Bacia de Evolução, foram analisados 70 perfis transversais ao eixo das áreas de dragagem, com espaçamento padrão de 20 metros entre seções.

Na Figura 37 é apresentada a máscara de dragagem para o projeto de aprofundamento da Dársena e Bacia de Evolução do Porto de São Francisco do Sul à cota de projeto de -14,0 m (DHN).

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

__

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

3

FOLHA:

REV:

87/132

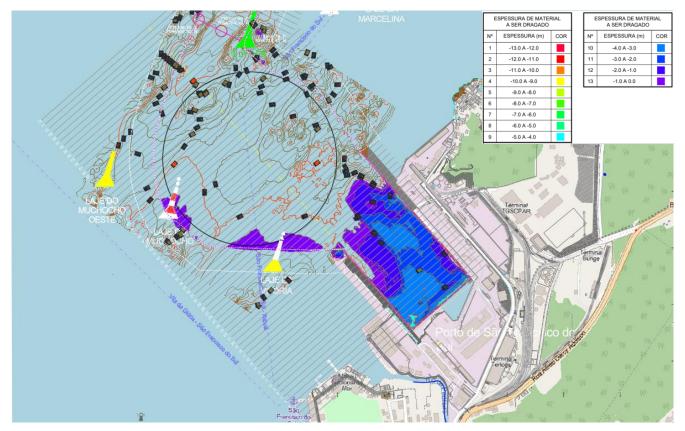


Figura 37. Máscara de dragagem da Dársena e Bacia de Evolução

A Tabela 17 apresenta o volume por seção a ser dragado na Área 2 e os volumes adicionais em função das tolerâncias.

Tabela 17. Valores obtidos por seção de dragagem para a Dársena e Bacia de Evolução.

	<u>VOLUME DE PROJETO</u> -14,0 m (DHN) SOLEIRA + TALUDES		<u>VOLUME TOLERÂNCIA</u> <u>VERTICAL 0,50 M + TALUDES</u>			
<u>ESTACAS</u>	ÁREA DA SEÇÃO [m²]	VOLUME DA SEÇÃO [m³]	VOLUME ACUMULADO [m³]	ÁREA DA SEÇÃO [m²]	VOLUME DA SEÇÃO [m³]	VOLUME ACUMULADO [m³]
ESTACA 1	1.636,59	0,00	0,00	137,02	0,00	0,00
ESTACA 2	863,02	24.996,10	24.996,10	137,04	2.740,57	2.740,57
ESTACA 3	833,19	16.962,12	41.958,23	137,06	2.741,01	5.481,57
ESTACA 4	807,27	16.404,64	58.362,87	136,48	2.735,46	8.217,03
ESTACA 5	806,29	16.135,66	74.498,53	135,18	2.716,65	10.933,68
ESTACA 6	795,86	16.021,56	90.520,08	135,33	2.705,09	13.638,78
ESTACA 7	806,86	16.027,21	106.547,29	136,86	2.721,91	16.360,69
ESTACA 8	651,53	14.583,86	121.131,15	137,17	2.740,34	19.101,03

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

REV:

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

FOLHA:

88/132

3

<u>ESTACAS</u>	<u>SC</u> ÁREA DA SEÇÃO	<u>-14,0 m (D</u> DLEIRA + TA <u>VOLUME</u>		<u>VERTI</u>	CAL 0,50 M	+ TALUDES
<u>ESTACAS</u>	ÁREA DA		LUDES			
<u>ESTACAS</u>	DA	VOLUME				
	DA		VOLUME	ÁREA	VOLUME	VOLUME
	SECÃO	DA	VOLUME ACUMULADO	DA	DA	VOLUME ACUMUI ADO
	<u>0</u>	<u>SEÇÃO</u>	ACUMULADO [m³]	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO [m³]
	[m²]	[m³]	1111-1	[m²]	[m³]	1111-1
ESTACA 9	592,04	12.435,64	133.566,79	137,19	2.743,65	21.844,68
ESTACA 10	579,83	11.718,68	145.285,47	137,22	2.744,09	24.588,78
ESTACA 11	559,71	11.395,45	156.680,92	137,24	2.744,53	27.333,31
ESTACA 12	565,81	11.255,22	167.936,14	137,26	2.744,98	30.078,29
ESTACA 13	579,87	11.456,78	179.392,92	129,58	2.668,37	32.746,65
ESTACA 14	584,97	11.648,39	191.041,31	124,34	2.539,16	35.285,81
ESTACA 15	600,40	11.853,64	202.894,95	123,53	2.478,71	37.764,52
ESTACA 16	605,83	12.062,27	214.957,22	124,10	2.476,29	40.240,81
ESTACA 17	554,97	11.607,99	226.565,22	124,08	2.481,80	42.722,61
ESTACA 18	481,13	10.361,00	236.926,21	125,63	2.497,13	45.219,75
ESTACA 19	502,54	9.836,68	246.762,90	141,61	2.672,36	47.892,11
ESTACA 20	572,93	10.754,61	257.517,51	153,19	2.947,97	50.840,07
ESTACA 21	336,00	9.089,22	266.606,73	140,28	2.934,73	53.774,80
ESTACA 22	257,33	5.933,30	272.540,03	117,45	2.577,28	56.352,08
ESTACA 23	204,50	4.618,37	277.158,40	113,29	2.307,32	58.659,40
ESTACA 24	197,42	4.019,18	281.177,58	101,83	2.151,19	60.810,59
ESTACA 25	167,68	3.650,94	284.828,52	97,53	1.993,66	62.804,25
ESTACA 26	125,70	2.933,79	287.762,32	97,69	1.952,20	64.756,45
ESTACA 27	59,41	1.851,09	289.613,41	74,44	1.721,23	66.477,68
ESTACA 28	24,77	841,77	290.455,18	50,70	1.251,34	67.729,03
ESTACA 29	6,38	311,44	290.766,62	36,00	867,00	68.596,03
ESTACA 30	24,16	305,38	291.072,00	41,02	770,24	69.366,27
ESTACA 31	38,65	628,08	291.700,09	47,78	888,01	70.254,28
ESTACA 32	32,75	713,95	292.414,04	57,31	1.050,90	71.305,18
ESTACA 33	6,37	391,21	292.805,25	60,48	1.177,95	72.483,14
ESTACA 34	0,00	63,71	292.868,96	28,48	889,61	73.372,75
ESTACA 35	0,00	0,00	292.868,96	0,20	286,74	73.659,49
ESTACA 36	0,00	0,00	292.868,96	9,70	99,00	73.758,48
ESTACA 37	0,00	0,00	292.868,96	0,00	97,02	73.855,50
ESTACA 38	0,06	0,64	292.869,60	11,77	117,74	73.973,24
ESTACA 39	0,00	0,64	292.870,23	5,92	176,97	74.150,21
ESTACA 40	0,01	0,07	292.870,30	13,75	196,69	74.346,90
ESTACA 41	12,52	125,22	292.995,53	28,42	421,65	74.768,54
ESTACA 42	33,06	455,75	293.451,27	40,58	690,02	75.458,57
ESTACA 43	19,75	528,10	293.979,37	44,86	854,45	76.313,02
ESTACA 44	4,89	246,44	294.225,82	50,45	953,17	77.266,19
ESTACA 45	8,13	130,19	294.356,00	54,92	1.053,74	78.319,93
ESTACA 46	8,37	164,97	294.520,98	49,20	1.041,19	79.361,12
ESTACA 47	1,68	100,56	294.621,53	41,65	908,46	80.269,58
ESTACA 48	0,00	16,84	294.638,38	24,53	661,78	80.931,36
ESTACA 49	0,00	0,00	294.638,38	5,84	303,72	81.235,08
ESTACA 50	0,00	0,00	294.638,38	0,35	61,94	81.297,02

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

FOLHA:

89/132

	<u>VO</u>	LUME DE P -14,0 m (D		<u>VOLUME TOLERÂNCIA</u> VERTICAL 0,50 M + TALUDES			
	SC	DLEIRA + TA		<u>VEIXII</u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
<u>ESTACAS</u>	ÁREA DA SEÇÃO [m²]	VOLUME DA SEÇÃO [m³]	VOLUME ACUMULADO [m³]	ÁREA DA SEÇÃO [m²]	VOLUME DA SEÇÃO [m³]	VOLUME ACUMULADO [m³]	
ESTACA 51	0,00	0,00	294.638,38	0,00	3,53	81.300,56	
ESTACA 52	0,00	0,00	294.638,38	0,00	0,00	81.300,56	
ESTACA 53	0,00	0,00	294.638,38	0,00	0,00	81.300,56	
ESTACA 54	4,12	41,17	294.679,55	7,86	78,56	81.379,12	
ESTACA 55	0,00	41,17	294.720,72	1,84	96,94	81.476,05	
ESTACA 56	0,00	0,00	294.720,72	0,43	22,69	81.498,74	
ESTACA 57	0,73	7,32	294.728,03	4,92	53,47	81.552,21	
ESTACA 58	0,00	7,32	294.735,35	0,00	49,16	81.601,37	
ESTACA 59	0,00	0,00	294.735,35	0,07	0,71	81.602,08	
ESTACA 60	0,00	0,00	294.735,35	0,00	0,71	81.602,79	
ESTACA 61	0,00	0,00	294.735,35	0,00	0,00	81.602,79	
ESTACA 62	0,00	0,00	294.735,35	0,00	0,00	81.602,79	
ESTACA 63	0,00	0,00	294.735,35	0,00	0,00	81.602,79	
ESTACA 64	0,00	0,00	294.735,35	0,00	0,00	81.602,79	
ESTACA 65	0,00	0,00	294.735,35	0,00	0,00	81.602,79	
ESTACA 66	0,00	0,00	294.735,35	0,00	0,00	81.602,79	
ESTACA 67	0,00	0,00	294.735,35	0,00	0,00	81.602,79	
ESTACA 68	0,00	0,00	294.735,35	0,00	0,00	81.602,79	
ESTACA 69	0,00	0,00	294.735,35	0,00	0,00	81.602,79	
ESTACA 70	0,00	0,00	294.735,35	0,00	0,00	81.602,79	
ESTACA 71	0,00	0,00	294.735,35	0,00	0,00	81.602,79	
ESTACA 72	0,00	0,00	294.735,35	0,00	0,00	81.602,79	

7.3.2. CANAL INTERNO

Para o Canal Interno, foram analisados 385 perfis transversais ao eixo das áreas de aprofundamento, com espaçamento padrão de 20 metros entre seções.

Na Figura 39 e Figura 38 são apresentadas as máscaras de dragagem para o projeto de aprofundamento do Canal Interno ao Porto de São Francisco do Sul à cota de projeto de -14,0 m (DHN).

SCPAR - PORTO DE SÃ	O FRANCISCO DO SUL	FOLHA:
DRAGAGEM DE MANUT	ENÇÃO	3
PROJETO BÁSICO	***************************************	REV:
SÃO FRANCISCO DO SUL	NÚMERO CLIENTE:	ENGENHARIA WASS
SCPAR	NÚMERO INFRAS: IFS-2412-220-D-RL-00001	INFRAS SA

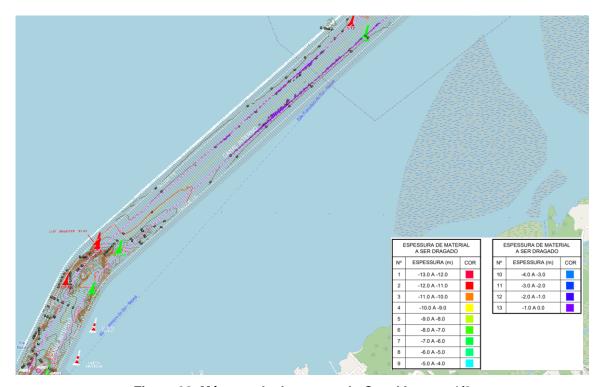


Figura 38. Máscara de dragagem do Canal Interno 1/2

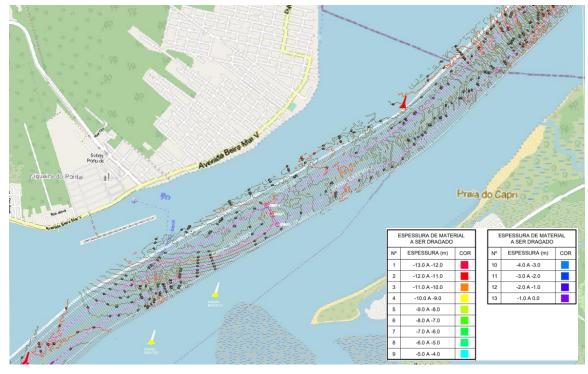


Figura 39. Máscara de dragagem do Canal Interno 2/2

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

INFRAS ENGENHARIA

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3
FOLHA:

91/132

A Tabela 18 apresenta o volume por seção a ser dragado no Canal Interno e os volumes adicionais em função das tolerâncias.

Tabela 18. Valores obtidos por seção de dragagem para a Canal Interno.

	VO	LUME DE P	PROJETO	VOLUME TOLERÂNCIA			
		<u>-14,0 m (E</u>	DHN)	VERT	CAL 0,50 M	+ TALUDES	
	SC	DLEIRA + T	ALUDES				
ESTACAS	ÁREA	VOLUME	VOLUME	ÁREA	VOLUME	VOLUME	
	DA	DA	VOLUME ACUMULADO	DA	DA	<u>VOLUME</u> ACUMULADO	
	<u>SEÇÃO</u>	<u>SEÇÃO</u>	[m³]	<u>SEÇÃO</u>	<u>SEÇÃO</u>	[m³]	
	[m²]	[m³]	[111-]	[m²]	[m³]	<u>[iii-]</u>	
ESTACA 1	0,00	0,00	0,00	2,42	0,00	0,00	
ESTACA 2	2,34	23,42	23,42	5,04	74,64	74,64	
ESTACA 3	11,51	138,55	161,97	9,70	147,46	222,10	
ESTACA 4	12,77	242,82	404,78	15,26	249,62	471,72	
ESTACA 5	6,08	188,48	593,26	7,46	227,18	698,91	
ESTACA 6	0,00	60,79	654,06	0,00	74,59	773,49	
ESTACA 7	0,00	0,00	654,06	0,00	0,00	773,49	
ESTACA 8	0,00	0,00	654,06	0,00	0,00	773,49	
ESTACA 9	0,00	0,00	654,06	0,00	0,00	773,49	
ESTACA 10	0,00	0,00	654,06	1,83	18,35	791,84	
ESTACA 11	0,00	0,00	654,06	0,00	18,35	810,19	
ESTACA 12	0,00	0,00	654,06	1,03	10,27	820,46	
ESTACA 13	0,00	0,00	654,06	0,00	10,27	830,73	
ESTACA 14	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 15	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 16	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 17	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 18	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 19	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 20	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 21	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 22	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 23	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 24	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 25	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 26	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 27	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 28	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 29	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 30	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 31	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 32	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 33	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 34	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 35	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 36	0,00	0,00	654,06	0,00	0,00	830,73	
ESTACA 37	0,00	0,00	654,06	0,00	0,00	830,73	

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

FOLHA:

92/132

3

	VO	LUME DE P	ROJETO	VO	LUME TOL	<u>ERÂNCIA</u>
		-14,0 m (E	HN)	<u>VER</u> TI	CAL 0,50 M	+ TALUDES
	SC	DLEIRA + T	ALUDES			_
ESTACAS	ÁREA	VOLUME	VOLUME	ÁREA	VOLUME	VOLUME
	DA	DA	VOLUME ACUMULADO	DA	DA	<u>VOLUME</u> ACUMULADO
	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO	<u>SEÇÃO</u>	<u>SEÇÃO</u>	
	[m²]	[m³]	[m³]	[m²]	[m³]	[m³]
ESTACA 38	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 39	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 40	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 41	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 42	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 43	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 44	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 45	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 46	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 47	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 48	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 49	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 50	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 51	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 52	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 53	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 54	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 55	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 56	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 57	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 58	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 59	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 60	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 61	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 62	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 63	0,00	0,00	654,06	0,00	0,00	830,73
ESTACA 64	9,69	106,12	760,18	9,55	104,66	935,39
ESTACA 65	0,00	106,12	866,29	0,00	104,66	1.040,05
ESTACA 66	0,00	0,00	866,29	0,00	0,00	1.040,05
ESTACA 67	0,00	0,00	866,29	0,39	3,91	1.043,96
ESTACA 68	0,00	0,00	866,29	0,00	3,91	1.047,87
ESTACA 69	0,00	0,00	866,29	1,17	11,72	1.059,59
ESTACA 70	0,00	0,00	866,29	1,43	26,05	1.085,64
ESTACA 71	0,00	0,00	866,29	0,77	22,03	1.107,67
ESTACA 72	0,00	0,00	866,29	0,05	8,23	1.115,90
ESTACA 73	0,00	0,00	866,29	0,00	0,53	1.116,43
ESTACA 74	0,00	0,00	866,29	0,32	3,17	1.119,60
ESTACA 75	0,00	0,00	866,29	1,01	13,23	1.132,84
ESTACA 76	0,00	0,00	866,29	0,17	11,81	1.144,65
ESTACA 77	0,00	0,00	866,29	0,00	1,75	1.146,40
ESTACA 78	0,00	0,00	866,29	0,00	0,00	1.146,40
ESTACA 79	0,00	0,00	866,29	0,00	0,00	1.146,40

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

.....

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

	VO	LUME DE P	PROJETO	VO	LUME TOL	<u>ERÂNCIA</u>
		-14,0 m (E	OHN)	<u>VER</u> TI	CAL 0,50 M	+ TALUDES
	SC	DLEIRA + T	ALUDES	'-		_
ESTACAS	ÁREA	VOLUME	VOLUME	ÁREA	VOLUME	VOLUME
	DA	DA	VOLUME ACUMULADO	DA	DA	VOLUME
	<u>SEÇÃO</u>	<u>SEÇÃO</u>	[m³]	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO [m³]
	[m²]	[m³]	[111-]	[m²]	[m³]	1111-1
ESTACA 80	0,00	0,00	866,29	0,00	0,00	1.146,40
ESTACA 81	0,00	0,00	866,29	0,00	0,00	1.146,40
ESTACA 82	0,00	0,00	866,29	0,00	0,00	1.146,40
ESTACA 83	0,00	0,00	866,29	0,00	0,00	1.146,40
ESTACA 84	0,00	0,00	866,29	0,00	0,00	1.146,40
ESTACA 85	0,00	0,00	866,29	0,00	0,00	1.146,40
ESTACA 86	0,00	0,00	866,29	0,66	6,58	1.152,97
ESTACA 87	0,00	0,00	866,29	2,85	35,11	1.188,09
ESTACA 88	0,00	0,00	866,29	4,25	71,03	1.259,11
ESTACA 89	0,00	0,00	866,29	6,89	111,44	1.370,55
ESTACA 90	0,00	0,00	866,29	7,45	143,45	1.514,00
ESTACA 91	0,00	0,00	866,29	8,20	156,49	1.670,49
ESTACA 92	0,00	0,00	866,29	8,58	167,82	1.838,31
ESTACA 93	0,00	0,00	866,29	9,81	183,94	2.022,25
ESTACA 94	0,00	0,00	866,29	10,07	198,77	2.221,02
ESTACA 95	0,00	0,00	866,29	9,39	194,61	2.415,63
ESTACA 96	0,00	0,00	866,29	9,96	193,53	2.609,17
ESTACA 97	0,00	0,00	866,29	9,73	196,89	2.806,05
ESTACA 98	0,15	1,49	867,79	11,41	211,43	3.017,48
ESTACA 99	0,00	1,49	869,28	8,62	200,36	3.217,83
ESTACA 100	0,00	0,00	869,28	8,10	167,20	3.385,04
ESTACA 101	0,03	0,30	869,58	10,20	183,02	3.568,06
ESTACA 102	0,00	0,30	869,88	7,62	178,23	3.746,29
ESTACA 103	0,00	0,01	869,89	8,11	157,32	3.903,60
ESTACA 104	0,00	0,01	869,89	5,99	141,05	4.044,66
ESTACA 105	0,00	0,00	869,89	4,32	103,13	4.147,78
ESTACA 106	0,00	0,00	869,89	4,10	84,18	4.231,96
ESTACA 107	0,00	0,00	869,89	4,44	85,42	4.317,39
ESTACA 108	0,00	0,00	869,89	4,27	87,15	4.404,54
ESTACA 109	0,00	0,00	869,89	3,12	73,86	4.478,40
ESTACA 110	0,00	0,00	869,89	3,62	67,32	4.545,73
ESTACA 111	0,00	0,00	869,89	3,47	70,88	4.616,60
ESTACA 112	0,00	0,00	869,89	3,04	65,13	4.681,74
ESTACA 113	0,00	0,00	869,89	2,67	57,15	4.738,89
ESTACA 114	0,00	0,00	869,89	3,92	65,89	4.804,78
ESTACA 115	0,00	0,00	869,89	5,47	93,83	4.898,61
ESTACA 116	0,00	0,00	869,89	3,55	90,15	4.988,76
ESTACA 117	0,00	0,00	869,89	2,84	63,86	5.052,61
ESTACA 118	0,00	0,00	869,89	3,68	65,22	5.117,84
ESTACA 119	0,00	0,00	869,89	3,68	73,68	5.191,51
ESTACA 120	0,00	0,00	869,89	5,20	88,79	5.280,30
ESTACA 121	0,00	0,00	869,89	4,24	94,34	5.374,64

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

	VO	LUME DE P	ROJETO	VO	LUME TOL	<u>ERÂNCIA</u>
		-14,0 m (E	OHN)	VERTI	CAL 0,50 M	+ TALUDES
	SC	DLEIRA + T	ALUDES			_
ESTACAS	ÁREA	VOLUME		ÁREA	VOLUME	
	DA	DA	VOLUME	DA	DA	VOLUME
	SEÇÃO	SEÇÃO	ACUMULADO	SEÇÃO	SEÇÃO	ACUMULADO
	[m²]	[m³]	[m³]	[m²]	[m³]	[<u>m³]</u>
ESTACA 122	0,00	0,00	869,89	5,22	94,58	5.469,22
ESTACA 123	0,00	0,00	869,89	5,63	108,48	5.577,70
ESTACA 124	0,00	0,00	869,89	6,37	119,98	5.697,68
ESTACA 125	0,00	0,00	869,89	6,86	132,34	5.830,02
ESTACA 126	0,00	0,00	869,89	9,92	167,87	5.997,89
ESTACA 127	0,00	0,00	869,89	10,73	206,49	6.204,37
ESTACA 128	0,00	0,00	869,89	9,37	200,95	6.405,32
ESTACA 129	0,00	0,00	869,89	11,87	212,38	6.617,70
ESTACA 130	0,00	0,00	869,89	12,44	243,10	6.860,80
ESTACA 131	0,00	0,00	869,89	14,07	265,09	7.125,89
ESTACA 132	0,00	0,00	869,89	17,64	317,05	7.442,93
ESTACA 133	0,00	0,00	869,89	21,98	396,20	7.839,14
ESTACA 134	0,13	1,27	871,16	27,26	492,41	8.331,55
ESTACA 135	0,00	1,27	872,43	24,54	517,98	8.849,53
ESTACA 136	0,00	0,04	872,47	27,84	523,80	9.373,33
ESTACA 137	0,00	0,04	872,51	30,84	586,83	9.960,16
ESTACA 138	0,00	0,00	872,51	30,17	610,13	10.570,28
ESTACA 139	0,00	0,00	872,51	33,69	638,64	11.208,92
ESTACA 140	0,00	0,00	872,51	35,19	688,82	11.897,75
ESTACA 141	0,00	0,00	872,51	37,59	727,74	12.625,49
ESTACA 142	0,00	0,00	872,51	39,72	773,07	13.398,57
ESTACA 143	0,00	0,00	872,51	40,99	807,15	14.205,71
ESTACA 144	0,00	0,00	872,51	42,13	831,22	15.036,93
ESTACA 145	0,01	0,07	872,58	47,93	900,53	15.937,46
ESTACA 146	0,12	1,22	873,81	50,39	983,11	16.920,57
ESTACA 147	0,21	3,27	877,07	50,72	1.011,06	17.931,63
ESTACA 148	0,61	8,21	885,29	52,74	1.034,64	18.966,27
ESTACA 149	0,40	10,10	895,39	58,73	1.114,76	20.081,03
ESTACA 150	0,64	10,37	905,75	61,05	1.197,83	21.278,86
ESTACA 151	1,38	20,14	925,89	60,00	1.210,54	22.489,40
ESTACA 152	0,57	19,42	945,32	61,34	1.213,39	23.702,79
ESTACA 153	1,33	18,92	964,23	60,82	1.221,58	24.924,37
ESTACA 154	3,40	47,23	1.011,46	64,86	1.256,87	26.181,24
ESTACA 155	1,16	45,61	1.057,07	63,54	1.284,02	27.465,26
ESTACA 156	1,40	25,60	1.082,67	63,15	1.266,88	28.732,15
ESTACA 157	1,18	25,80	1.108,47	65,36	1.285,08	30.017,23
ESTACA 158	1,44	26,20	1.134,67	62,25	1.276,07	31.293,30
ESTACA 159	1,57	30,04	1.164,71	63,04	1.252,92	32.546,22
ESTACA 160	1,66	32,28	1.197,00	64,73	1.277,76	33.823,98
ESTACA 161	1,51	31,72	1.228,72	65,25	1.299,83	35.123,81
ESTACA 162	1,81	33,20	1.261,92	67,68	1.329,29	36.453,10
ESTACA 163	2,59	43,93	1.305,84	72,71	1.403,88	37.856,98

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

ENGENHARIA

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR - PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

REV:

3

FOLHA:

-	VO	LUME DE P	PROJETO	VO	LUME TOL	ERÂNCIA
		-14,0 m (E				+ TALUDES
	SO	DLEIRA + T	-			
ESTACAS	ÁREA	VOLUME		ÁREA	VOLUME	V01.11ME
	DA	DA	VOLUME	DA	DA	VOLUME
	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO
	[m²]	[m³]	[m³]	[m²]	[m³]	<u>[m³]</u>
ESTACA 164	3,26	58,48	1.364,32	70,31	1.430,16	39.287,14
ESTACA 165	1,25	45,13	1.409,45	65,92	1.362,31	40.649,45
ESTACA 166	1,38	26,33	1.435,77	70,76	1.366,80	42.016,26
ESTACA 167	1,48	28,62	1.464,39	72,29	1.430,50	43.446,75
ESTACA 168	2,53	40,13	1.504,53	71,37	1.436,60	44.883,35
ESTACA 169	3,46	59,91	1.564,44	77,12	1.484,89	46.368,24
ESTACA 170	4,07	75,26	1.639,70	76,58	1.537,01	47.905,25
ESTACA 171	3,69	77,55	1.717,25	80,61	1.571,86	49.477,11
ESTACA 172	4,11	78,00	1.795,24	79,30	1.599,06	51.076,16
ESTACA 173	4,02	81,36	1.876,61	76,62	1.559,12	52.635,29
ESTACA 174	3,57	75,89	1.952,50	74,47	1.510,83	54.146,12
ESTACA 175	5,08	86,44	2.038,94	76,10	1.505,69	55.651,81
ESTACA 176	3,48	85,62	2.124,55	74,95	1.510,47	57.162,28
ESTACA 177	5,36	88,45	2.213,00	75,27	1.502,17	58.664,44
ESTACA 178	4,71	100,75	2.313,75	78,71	1.539,78	60.204,22
ESTACA 179	4,31	90,22	2.403,97	79,69	1.583,94	61.788,16
ESTACA 180	4,58	88,86	2.492,83	78,82	1.585,09	63.373,26
ESTACA 181	3,60	81,78	2.574,61	75,93	1.547,56	64.920,82
ESTACA 182	3,99	75,89	2.650,50	77,55	1.534,86	66.455,68
ESTACA 183	4,03	80,21	2.730,71	77,79	1.553,46	68.009,14
ESTACA 184	5,30	93,27	2.823,98	78,45	1.562,40	69.571,54
ESTACA 185	4,09	93,85	2.917,84	77,13	1.555,77	71.127,31
ESTACA 186	4,28	83,73	3.001,57	75,88	1.530,14	72.657,45
ESTACA 187	4,01	82,92	3.084,48	75,11	1.509,95	74.167,40
ESTACA 188	4,34	83,46	3.167,95	80,22	1.553,29	75.720,69
ESTACA 189	3,90	82,43	3.250,38	78,53	1.587,45	77.308,15
ESTACA 190	5,49	93,94	3.344,32	83,34	1.618,64	78.926,78
ESTACA 191	5,24	107,33	3.451,66	81,85	1.651,88	80.578,66
ESTACA 192	3,01	82,56	3.534,21	81,99	1.638,38	82.217,04
ESTACA 193	3,64	66,48	3.600,70	79,74	1.617,31	83.834,36
ESTACA 194	3,30	69,33	3.670,02	81,17	1.609,18	85.443,53
ESTACA 195	4,39	76,88	3.746,91	82,96	1.641,30	87.084,83
ESTACA 196	4,24	86,29	3.833,20	79,46	1.624,16	88.708,99
ESTACA 197	2,91	71,46	3.904,65	78,97	1.584,32	90.293,31
ESTACA 198	5,52	84,32	3.988,98	78,06	1.570,31	91.863,62
ESTACA 200	4,41	99,34	4.088,31	78,48	1.565,41	93.429,03
ESTACA 200	4,88	92,93	4.181,24	81,59	1.600,74	95.029,77
ESTACA 201	3,89	87,75	4.268,99	81,76	1.633,55	96.663,32
ESTACA 202	3,21	71,04	4.340,03	83,03	1.647,99	98.311,31
ESTACA 203	3,09	63,04	4.403,07	82,40	1.654,36	99.965,68
ESTACA 204	4,64	77,26	4.480,33	83,86	1.662,61	101.628,29
ESTACA 205	4,75	93,90	4.574,23	80,38	1.642,41	103.270,70

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

REV:

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

FOLHA:

96/132

3

	VO	LUME DE P	PROJETO	VO	LUME TOL	ERÂNCIA
		-14,0 m (E	OHN)	VERTI	CAL 0,50 M	+ TALUDES
	SC	DLEIRA + T	ALUDES			
ESTACAS	ÁREA	VOLUME	VOLUME	ÁREA	VOLUME	\/OLUME
	DA	DA	VOLUME	DA	DA	VOLUME
	SEÇÃO	SEÇÃO	ACUMULADO	<u>SEÇÃO</u>	SEÇÃO	ACUMULADO
	[m²]	[m³]	[m³]	[m²]	[m³]	<u>[m³]</u>
ESTACA 206	3,71	84,63	4.658,86	80,06	1.604,43	104.875,13
ESTACA 207	2,97	66,78	4.725,64	82,80	1.628,62	106.503,74
ESTACA 208	3,32	62,88	4.788,53	82,39	1.651,95	108.155,70
ESTACA 209	2,47	57,92	4.846,45	80,87	1.632,65	109.788,35
ESTACA 210	4,17	66,39	4.912,84	77,02	1.578,96	111.367,31
ESTACA 211	4,95	91,13	5.003,97	78,75	1.557,75	112.925,06
ESTACA 212	5,45	104,01	5.107,98	77,43	1.561,83	114.486,89
ESTACA 213	3,65	91,07	5.199,05	74,56	1.519,94	116.006,83
ESTACA 214	3,88	75,37	5.274,41	78,59	1.531,56	117.538,39
ESTACA 215	2,96	68,43	5.342,84	73,25	1.518,45	119.056,83
ESTACA 216	3,78	67,41	5.410,25	73,06	1.463,07	120.519,90
ESTACA 217	3,31	70,95	5.481,20	73,34	1.463,99	121.983,90
ESTACA 218	3,14	64,49	5.545,69	74,82	1.481,59	123.465,48
ESTACA 219	3,55	66,81	5.612,51	71,92	1.467,38	124.932,86
ESTACA 220	4,74	82,82	5.695,33	73,89	1.458,11	126.390,97
ESTACA 221	3,06	77,99	5.773,32	71,20	1.450,88	127.841,86
ESTACA 222	2,85	59,07	5.832,39	69,10	1.402,97	129.244,82
ESTACA 223	5,12	79,64	5.912,03	61,45	1.305,46	130.550,29
ESTACA 224	1,72	68,35	5.980,39	59,04	1.204,86	131.755,15
ESTACA 225	1,89	36,06	6.016,44	53,94	1.129,75	132.884,90
ESTACA 226	1,58	34,69	6.051,13	54,60	1.085,34	133.970,24
ESTACA 227	1,15	27,31	6.078,44	52,27	1.068,66	135.038,90
ESTACA 228	2,17	33,22	6.111,66	49,15	1.014,18	136.053,08
ESTACA 229	0,98	31,48	6.143,14	48,93	980,79	137.033,86
ESTACA 230	2,15	31,28	6.174,42	45,03	939,56	137.973,43
ESTACA 231	0,70	28,54	6.202,97	44,14	891,70	138.865,12
ESTACA 232	1,24	19,42	6.222,39	45,50	896,49	139.761,61
ESTACA 233	0,98	22,14	6.244,53	44,55	900,54	140.662,16
ESTACA 234	1,10	20,78	6.265,30	43,54	880,87	141.543,02
ESTACA 235	2,13	32,30	6.297,60	42,89	864,25	142.407,28
ESTACA 236	2,95	50,77	6.348,37	49,55	924,35	143.331,63
ESTACA 237	1,51	44,63	6.393,00	42,34	918,83	144.250,46
ESTACA 238	3,60	51,15	6.444,15	33,29	756,31	145.006,77
ESTACA 239	4,17	77,74	6.521,90	36,99	702,83	145.709,61
ESTACA 240	3,06	72,31	6.594,21	38,52	755,14	146.464,74
ESTACA 241	2,34	53,95	6.648,16	32,54	710,64	147.175,38
ESTACA 242	0,21	25,43	6.673,58	30,36	629,02	147.804,40
ESTACA 243	1,11	13,15	6.686,74	22,16	525,25	148.329,65
ESTACA 244	0,88	19,93	6.706,67	19,50	416,57	148.746,22
ESTACA 245	0,77	16,58	6.723,25	15,19	346,81	149.093,02
ESTACA 246	1,12	18,95	6.742,20	17,63	328,13	149.421,16
ESTACA 247	1,40	25,19	6.767,39	15,52	331,47	149.752,62

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

.....

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

	VO	LUME DE P	PROJETO	VO	LUME TOL	ERÂNCIA
		-14,0 m (E				+ TALUDES
	SO	DLEIRA + T	-			
ESTACAS	ÁREA	VOLUME		ÁREA	VOLUME	V0111ME
	DA	DA	VOLUME	DA	DA	VOLUME
	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO	<u>SEÇÃO</u>	SEÇÃO	ACUMULADO
	[m²]	[m³]	[m³]	[m²]	[m³]	<u>[m³]</u>
ESTACA 248	1,32	27,23	6.794,61	17,71	332,34	150.084,96
ESTACA 249	2,39	37,10	6.831,71	21,14	388,58	150.473,54
ESTACA 250	2,14	45,29	6.877,00	21,77	429,15	150.902,69
ESTACA 251	1,40	35,45	6.912,46	16,03	378,04	151.280,72
ESTACA 252	0,19	15,91	6.928,36	13,44	294,73	151.575,46
ESTACA 253	0,12	3,09	6.931,45	10,88	243,26	151.818,71
ESTACA 254	0,21	3,28	6.934,73	9,57	204,56	152.023,27
ESTACA 255	0,15	3,53	6.938,26	9,71	192,86	152.216,13
ESTACA 256	0,04	1,84	6.940,11	8,18	178,99	152.395,12
ESTACA 257	0,00	0,38	6.940,49	6,52	147,01	152.542,13
ESTACA 258	0,00	0,00	6.940,49	7,24	137,54	152.679,67
ESTACA 259	0,00	0,00	6.940,49	5,42	126,59	152.806,26
ESTACA 260	0,00	0,00	6.940,49	5,25	106,72	152.912,98
ESTACA 261	0,00	0,00	6.940,49	4,31	95,63	153.008,61
ESTACA 262	0,00	0,00	6.940,49	2,39	67,01	153.075,62
ESTACA 263	0,00	0,00	6.940,49	2,94	53,25	153.128,87
ESTACA 264	0,00	0,00	6.940,49	3,13	60,68	153.189,55
ESTACA 265	0,00	0,00	6.940,49	1,26	43,87	153.233,42
ESTACA 266	0,00	0,00	6.940,49	1,14	23,97	153.257,38
ESTACA 267	0,00	0,00	6.940,49	0,90	20,40	153.277,79
ESTACA 268	0,00	0,00	6.940,49	0,80	16,99	153.294,77
ESTACA 269	0,00	0,00	6.940,49	0,43	12,27	153.307,04
ESTACA 270	0,00	0,00	6.940,49	0,01	4,40	153.311,45
ESTACA 271	0,00	0,00	6.940,49	0,00	0,12	153.311,57
ESTACA 272	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 273	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 274	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 275	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 276	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 277	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 278	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 279	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 280	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 281	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 282	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 283	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 284	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 285	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 286	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 287	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 288	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 289	0,00	0,00	6.940,49	0,00	0,00	153.311,57

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

REV:

3

FOLHA:

98/132

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

	VOLUME DE PROJETO VOLUME TOLERÂNO					ERÂNCIA
		-14,0 m (E	OHN)	VERTI	CAL 0,50 M	+ TALUDES
	S	DLEIRA + T				
ESTACAS	ÁREA	VOLUME		ÁREA	VOLUME	V61 1114E
	DA	DA	VOLUME	DA	DA	VOLUME
	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO
	[m²]	[m³]	[m³]	[m²]	[m³]	[m³]
ESTACA 290	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 291	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 292	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 293	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 294	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 295	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 296	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 297	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 298	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 299	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 300	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 301	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 302	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 303	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 304	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 305	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 306	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 307	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 308	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 309	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 310	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 311	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 312	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 313	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 314	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 315	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 316	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 317	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 318	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 319	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 320	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 321	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 322	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 323	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 324	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 325	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 326	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 327	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 328	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 329	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 330	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 330	0,00	0,00	6.940,49	0,00	0,00	153.311,57
LOTAGA 331	0,00	0,00	0.0-0,-0	0,00	0,00	100.011,01

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

INFRAS ENGENHARIA

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

	VO	LUME DE P	ROJETO	VO	LUME TOL	<u>ERÂNCIA</u>
		<u>-14,0 m (</u> [OHN)	<u>VER</u> TI	CAL 0,50 M	+ TALUDES
	SC	DLEIRA + T	ALUDES			
ESTACAS	ÁREA	VOLUME	VOLUME	ÁREA	VOLUME	VOLUME
	DA	DA	VOLUME ACUMULADO	DA	DA	VOLUME
	<u>SEÇÃO</u>	<u>SEÇÃO</u>		<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO
	[m²]	[m³]	[m³]	[m²]	[m³]	<u>[m³]</u>
ESTACA 332	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 333	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 334	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 335	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 336	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 337	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 338	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 339	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 340	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 341	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 342	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 343	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 344	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 345	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 346	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 347	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 348	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 349	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 350	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 351	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 352	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 353	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 354	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 355	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 356	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 357	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 358	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 359	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 360	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 361	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 362	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 363	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 364	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 365	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 366	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 367	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 368	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 369	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 370	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 371	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 372	0,00	0,00	6.940,49	0,00	0,00	153.311,57
ESTACA 373	0,00	0,00	6.940,49	0,00	0,00	153.311,57

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV: **3**

FOLHA:

100/132

	VOLUME DE PROJETO VOLUME TOLERÂNCIA								
		<u>-14,0 m (E</u>	-	VERTICAL 0,50 M + TALUDES					
	SO	OLEIRA + T	<u>ALUDES</u>						
<u>ESTACAS</u>	<u>ÁREA</u>	<u>VOLUME</u>	VOLUME	<u>ÁREA</u>	VOLUME	VOLUME			
	<u>DA</u>	<u>DA</u>	ACUMULADO	<u>DA</u>	<u>DA</u>	ACUMULADO			
	<u>SEÇÃO</u>	<u>SEÇÃO</u>		<u>SEÇÃO</u>	<u>SEÇÃO</u>				
	[m²]	[m³]	[m³]	[m²]	[m³]	[m³]			
ESTACA 374	0,00	0,00	6.940,49	0,00	0,00	153.311,57			
ESTACA 375	0,00	0,00	6.940,49	0,00	0,00	153.311,57			
ESTACA 376	0,00	0,00	6.940,49	0,00	0,00	153.311,57			
ESTACA 377	0,00	0,00	6.940,49	0,00	0,00	153.311,57			
ESTACA 378	0,00	0,00	6.940,49	0,00	0,00	153.311,57			
ESTACA 379	0,00	0,00	6.940,49	0,00	0,00	153.311,57			
ESTACA 380	0,00	0,00	6.940,49	0,00	0,00	153.311,57			
ESTACA 381	0,00	0,00	6.940,49	0,00	0,00	153.311,57			
ESTACA 382	0,00	0,00	6.940,49	0,00	0,00	153.311,57			
ESTACA 383	0,00	0,00	6.940,49	0,00	0,00	153.311,57			
ESTACA 384	0,00	0,00	6.940,49	0,00	0,00	153.311,57			
ESTACA 385	0,00	0,00	6.940,49	0,00	0,00	153.311,57			

7.3.3. CANAL EXTERNO

Para o canal externo, foram analisados 617 perfis transversais ao eixo das áreas de manutenção, com espaçamento de 20 metros entre seções.

Na Figura 40 e Figura 41 são apresentadas as máscaras de dragagem para o projeto de dragagem de manutenção do Canal Externo ao Porto de São Francisco do Sul à cota de projeto de -14,0 m (DHN).

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3
FOLHA:

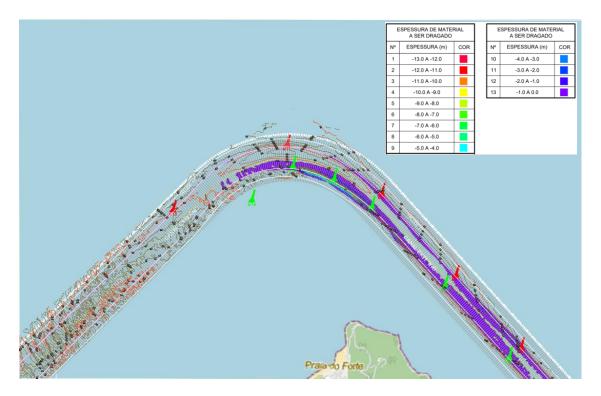


Figura 40. Máscara de dragagem do Canal Externo 1/2

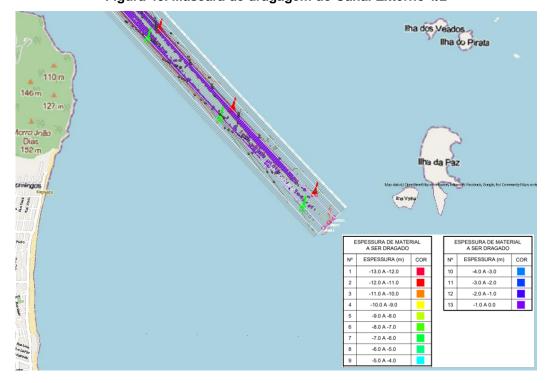


Figura 41. Máscara de dragagem do Canal Externo 2/2

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

KEV:		
	3	
FOLHA:		

102/132

A Tabela 19 apresenta o volume por seção a ser dragado no Canal Externo e os volumes adicionais em função das tolerâncias.

Tabela 19. Valores obtidos por seção de dragagem para o Canal Externo

	VO	LUME DE P		VOLUME TOLERÂNCIA			
	_	<u>-14,0 m (D</u>		VERTI	CAL 0,50 M	+ TALUDES	
FCTACAC		LEIRA + TA	ALUDES	,			
<u>ESTACAS</u>	<u>ÁREA</u> DA	VOLUME DA	<u>VOLUME</u>	<u>ÁREA</u> DA	VOLUME DA	<u>VOLUME</u>	
	SEÇÃO	SEÇÃO	<u>ACUMULADO</u>	SEÇÃO	SEÇÃO	<u>ACUMULADO</u>	
	[m ²]	[m ³]	[m³]	[m ²]	[m ³]	[m³]	
ESTACA 1	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 2	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 3	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 4	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 5	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 6	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 7	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 8	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 9	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 10	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 11	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 12	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 13	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 14	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 15	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 16	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 17	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 18	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 19	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 20	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 21	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 22	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 23	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 24	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 25	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 26	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 27	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 28	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 29	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 30	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 31	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 32	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 33	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 34	0,00	0,00	0,00	0,00	0,00	0,00	
ESTACA 35	0,00	0,00	0,00	0,00	0,00	0,00	

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

3

FOLHA:

	VO	LUME DE P	ROJETO	VO	LUME TOL	<u>ERÂNCIA</u>
		-14,0 m (D	HN)	VERTI	+ TALUDES	
	so	LEIRA + TA	ALUDES			<u> </u>
ESTACAS	ÁREA	VOLUME	VOLUME	ÁREA	VOLUME	VOLUME
	DA	DA	VOLUME ACUMULADO	DA	DA	<u>VOLUME</u> ACUMULADO
	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO [m³]	<u>SEÇÃO</u>	<u>SEÇÃO</u>	[m³]
	[m²]	[m³]	<u>[111-]</u>	[m²]	[m³]	[1111-]
ESTACA 36	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 37	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 38	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 39	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 40	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 41	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 42	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 43	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 44	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 45	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 46	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 47	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 48	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 49	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 50	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 51	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 52	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 53	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 54	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 55	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 56	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 57	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 58	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 59	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 60	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 61	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 62	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 63	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 64	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 65	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 66	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 67	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 68	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 69	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 70	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 71	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 72	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 73	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 74	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 75	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 76	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 77	0,00	0,00	0,00	0,00	0,00	0,00

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

REV:

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

3

FOLHA:

-	VO	LUME DE P	ROJETO	VO	LUME TOL	<u>ERÂNCIA</u>
	<u>-14,0 m (DHN)</u>			VERTICAL 0,50 M + TALUDES		
	sc	LEIRA + TA	ALUDES			
ESTACAS	ÁREA	VOLUME	VOLUME	ÁREA	VOLUME	VOLUME
	DA	DA	VOLUME ACUMULADO	DA	DA	VOLUME
	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO [m³]	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO [m³]
	[m²]	[m³]	<u>[III+]</u>	[m²]	[m³]	[111-]
ESTACA 78	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 79	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 80	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 81	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 82	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 83	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 84	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 85	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 86	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 87	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 88	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 89	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 90	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 91	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 92	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 93	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 94	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 95	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 96	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 97	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 98	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 99	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 100	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 101	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 102	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 103	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 104	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 105	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 106	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 107	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 108	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 109	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 110	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 111	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 112	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 113 ESTACA 114	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 114 ESTACA 115	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 115	0,00	0,00	0,00	0,00	0,00	0,00
	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 117	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 118	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 119	0,00	0,00	0,00	0,00	0,00	0,00

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

	VO	LUME DE P	ROJETO	VO	LUME TOL	<u>ERÂNCIA</u>
		<u>-14,0 m (D</u>	HN)	<u>VERTI</u>	I + TALUDES	
	SC	LEIRA + TA	ALUDES			
<u>ESTACAS</u>	ÁREA	VOLUME	VOLUME	ÁREA	VOLUME	VOLUME
	DA	DA	VOLUME ACUMULADO	DA	DA	<u>VOLUME</u> ACUMULADO
	<u>SEÇÃO</u>	<u>SEÇÃO</u>	[m³]	<u>SEÇÃO</u>	<u>SEÇÃO</u>	
	[m²]	[m³]		[m²]	[m³]	
ESTACA 120	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 121	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 122	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 123	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 124	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 125	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 126	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 127	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 128	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 129	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 130	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 131	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 132	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 133	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 134	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 135	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 136	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 137	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 138	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 139	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 140	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 141	0,00	0,00	0,00	0,00	0,00	0,00
ESTACA 142	0,00	0,00	0,00	1,91	19,05	19,05
ESTACA 143	0,00	0,00	0,00	1,04	29,48	48,53
ESTACA 144	0,00	0,00	0,00	0,00	10,43	58,95
ESTACA 145	0,00	0,00	0,00	1,57	15,68	74,64
ESTACA 146	0,00	0,00	0,00	0,00	15,68	90,32
ESTACA 147	0,00	0,00	0,00	0,00	0,00	90,32
ESTACA 148	0,00	0,00	0,00	0,00	0,00	90,32
ESTACA 149	0,00	0,00	0,00	0,00	0,00	90,32
ESTACA 150	0,00	0,00	0,00	0,00	0,00	90,32
ESTACA 151	0,00	0,00	0,00	0,00	0,00	90,32
ESTACA 152	0,00	0,00	0,00	0,00	0,00	90,32
ESTACA 153	0,00	0,00	0,00	0,00	0,00	90,32
ESTACA 154	0,00	0,00	0,00	0,00	0,00	90,32
ESTACA 155	0,00	0,00	0,00	0,00	0,00	90,32
ESTACA 156	0,00	0,00	0,00	0,00	0,00	90,32
ESTACA 157	0,00	0,00	0,00	0,00	0,00	90,32
ESTACA 158	0,00	0,00	0,00	0,00	0,00	90,32
ESTACA 159	0,00	0,00	0,00	0,00	0,00	90,32
ESTACA 160	0,00	0,00	0,00	0,11	1,11	91,43
ESTACA 161	0,00	0,00	0,00	4,95	50,62	142,05

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

	VO	LUME DE P	ROJETO	VO	LUME TOL	ERÂNCIA
	-14,0 m (DHN)			VERTICAL 0,50 M + TALUDES		
	sc	LEIRA + TA		-		
ESTACAS	ÁREA	VOLUME		ÁREA	VOLUME	\/OLUME
	DA	DA	VOLUME	DA	DA	VOLUME
	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO
	[m²]	[m³]	[m³]	[m²]	[m³]	[m³]
ESTACA 162	0,00	0,00	0,00	0,00	49,51	191,56
ESTACA 163	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 164	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 165	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 166	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 167	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 168	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 169	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 170	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 171	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 172	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 173	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 174	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 175	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 176	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 177	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 178	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 179	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 180	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 181	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 182	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 183	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 184	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 185	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 186	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 187	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 188	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 189	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 190	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 191	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 192	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 193	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 194	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 195	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 196	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 197	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 198	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 199	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 200	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 201	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 202	0,00	0,00	0,00	0,00	0,00	191,56
ESTACA 203	0,00	0,00	0,00	0,00	0,00	191,56

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

.....

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

FOLHA:

107/132

3

	VO	LUME DE P	ROJETO	VO	VOLUME TOLERÂNCIA			
		-14,0 m (D	HN)	VERTICAL 0,50 M + TALUDES				
	sc	LEIRA + TA						
ESTACAS	ÁREA	VOLUME		ÁREA	VOLUME	\/OLUME		
	DA	DA	VOLUME	DA	DA	VOLUME		
	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO		
	[m²]	[m³]	[m³]	[m²]	[m³]	[m³]		
ESTACA 204	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 205	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 206	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 207	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 208	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 209	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 210	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 211	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 212	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 213	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 214	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 215	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 216	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 217	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 218	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 219	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 220	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 221	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 222	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 223	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 224	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 225	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 226	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 227	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 228	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 229	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 230	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 231	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 232	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 233	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 234	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 235	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 236	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 237	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 238	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 239	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 240	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 241	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 242	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 243	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 244	0,00	0,00	0,00	0,00	0,00	191,56		
ESTACA 245	0,00	0,00	0,00	0,00	0,00	191,56		

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

RFV·

3

FOLHA:

108/132

PROJETO BASICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

VOLUME DE PROJETO VOLUME TOLERÂNCIA -14,0 m (DHN) **VERTICAL 0,50 M + TALUDES SOLEIRA + TALUDES ESTACAS VOLUME** ÁREA VOLUME ÁREA **VOLUME VOLUME** DA DA DA DA **ACUMULADO** ACUMULADO SECÃO SECÃO SECÃO **SECÃO** [m³] [m³] [m²] $[m^3]$ [m²] $[m^3]$ **ESTACA 246** 0,00 0,00 0,00 0,00 0,00 191,56 **ESTACA 247** 0.00 0,00 0,00 0,00 0,00 191,56 0,00 **ESTACA 248** 0,00 0,00 0,00 0,00 191,56 **ESTACA 249** 0,00 0,00 0,00 0,00 0,00 191,56 **ESTACA 250** 0,00 0,00 0,00 0,00 0,00 191,56 ESTACA 251 0,00 0,00 0,00 0,00 0,00 191,56 **ESTACA 252** 0,00 0,00 0,00 0.00 0,00 191,56 **ESTACA 253** 0.00 0,00 0,00 0,00 0,00 191,56 ESTACA 254 0.00 0,00 0,00 0,00 0,00 191,56 **ESTACA 255** 0,00 0,00 0,00 0,00 0,00 191,56 **ESTACA 256** 0,00 0,00 0,00 0,00 0,00 191,56 0,00 **ESTACA 257** 0,00 0,00 0,00 0,00 191,56 **ESTACA 258** 0.00 0.00 0,00 0.00 0,00 191,56 **ESTACA 259** 0,00 0,00 0,00 0,00 0,00 191,56 ESTACA 260 0,00 0,00 0,00 0,00 0,00 191,56 **ESTACA 261** 0,00 0,00 0,00 0,00 0,00 191,56 ESTACA 262 0,00 0,00 0,00 0,00 0,00 191,56 ESTACA 263 0,00 0,00 0,00 0,05 0,45 192,02 **ESTACA 264** 0.00 0.00 0,00 0.00 0,45 192,47 **ESTACA 265** 0.00 0,00 0,00 0,29 2,89 195,37 **ESTACA 266** 0,00 0,00 0,00 0,00 2,89 198,26 **ESTACA 267** 0.00 0.00 0,00 0.00 0.00 198,26 **ESTACA 268** 0,00 0,00 0,00 0,00 0,02 198,28 ESTACA 269 0,00 0,00 0,00 1,11 11,11 209,40 **ESTACA 270** 0,01 0,11 0,11 7,34 84,52 293,92 ESTACA 271 1,60 16,08 16,19 12,06 194,04 487,96 **ESTACA 272** 0,22 18,19 34,38 13.54 256,06 744.02 2,22 897.10 ESTACA 273 0,00 36,60 1,76 153,07 ESTACA 274 0,00 0,00 36,60 3,26 50,22 947,32 ESTACA 275 0,00 0,00 36,60 3,80 70,61 1.017,93 ESTACA 276 0,00 0,00 36,60 2,24 60,44 1.078,37 **ESTACA 277** 0,00 33,02 1.111,39 0,00 36,60 1,06 **ESTACA 278** 0,00 0,00 9,99 110,49 1.221,88 36,60 ESTACA 279 0,00 0,00 7,51 174,98 1.396,87 36,60 **ESTACA 280** 0.00 0,00 36,60 12,04 195,51 1.592,38 **ESTACA 281** 0,48 4,78 41,38 29,63 416,74 2.009,12 ESTACA 282 21,93 224,13 265,51 57,20 868,29 2.877,41 487<u>,0</u>7 ESTACA 283 0,22 221,56 3.772,61 32,32 895,20 ESTACA 284 0,00 2,21 489,28 21,08 533,99 4.306,59 **ESTACA 285** 9.41 94,14 583,42 39.05 601,28 4.907,87 ESTACA 286 253,29 15,91 836,71 49,14 881,93 5.789,80 **ESTACA 287** 159,18 6.414.87 0,00 995.89 13,37 625,07

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

	VOLUME DE PROJETO			VO	LUME TOL	<u>VOLUME TOLERÂNCIA</u>			
		-14,0 m (D	HN)	VERTICAL 0,50 M + TALUDES					
	sc	LEIRA + TA							
ESTACAS	ÁREA	ÁDEA VOLUME		ÁREA VOLUME		V61 11145			
	DA	DA	VOLUME	DA	DA	VOLUME			
	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO			
	[m²]	[m³]	[m³]	[m²]	[m³]	[m³]			
ESTACA 288	0,16	1,60	997,48	13,88	272,50	6.687,37			
ESTACA 289	0,48	6,35	1.003,83	14,53	284,17	6.971,54			
ESTACA 290	0,77	12,49	1.016,33	21,21	357,46	7.329,00			
ESTACA 291	3,33	41,00	1.057,33	42,06	632,68	7.961,67			
ESTACA 292	43,13	464,59	1.521,91	49,85	919,04	8.880,71			
ESTACA 293	4,73	478,54	2.000,45	36,74	865,91	9.746,62			
ESTACA 294	8,55	132,80	2.133,25	44,00	807,39	10.554,01			
ESTACA 295	18,46	270,12	2.403,37	42,12	861,19	11.415,20			
ESTACA 296	4,30	227,54	2.630,91	35,39	775,07	12.190,27			
ESTACA 297	13,33	176,27	2.807,18	39,57	749,51	12.939,78			
ESTACA 298	33,03	463,57	3.270,75	40,14	797,03	13.736,80			
ESTACA 299	4,87	379,00	3.649,75	35,44	755,73	14.492,54			
ESTACA 300	10,42	152,96	3.802,71	34,36	697,92	15.190,45			
ESTACA 301	12,17	225,92	4.028,64	36,99	713,49	15.903,94			
ESTACA 302	12,02	241,94	4.270,57	38,93	759,20	16.663,14			
ESTACA 303	24,03	360,58	4.631,15	39,79	787,12	17.450,25			
ESTACA 304	17,04	410,70	5.041,85	40,74	805,22	18.255,48			
ESTACA 305	8,77	258,06	5.299,91	41,21	819,43	19.074,91			
ESTACA 306	17,86	266,31	5.566,22	41,81	830,13	19.905,04			
ESTACA 307	34,13	519,91	6.086,13	42,83	846,39	20.751,43			
ESTACA 308	46,99	811,25	6.897,38	45,90	887,36	21.638,79			
ESTACA 309	50,48	974,75	7.872,14	51,53	974,35	22.613,14			
ESTACA 310	42,38	928,56	8.800,70	50,90	1.024,33	23.637,47			
ESTACA 311	29,31	716,84	9.517,54	49,17	1.000,70	24.638,17			
ESTACA 312	30,21	595,22	10.112,76	51,94	1.011,05	25.649,22			
ESTACA 313	39,00	692,18	10.804,93	51,47	1.034,12	26.683,33			
ESTACA 314	60,17	991,79	11.796,72	45,79	972,63	27.655,96			
ESTACA 315	72,07	1.322,45	13.119,17	46,32	921,08	28.577,04			
ESTACA 316	67,09	1.391,60	14.510,77	45,99	923,12	29.500,16			
ESTACA 317	69,24	1.363,26	15.874,03	46,02	920,17	30.420,33			
ESTACA 318	69,01	1.382,42	17.256,45	46,14	921,69	31.342,02			
ESTACA 319	67,92	1.369,26	18.625,71	45,84	919,86	32.261,88			
ESTACA 320	52,36	1.202,78	19.828,49	47,83	936,70	33.198,58			
ESTACA 321	56,66	1.090,19	20.918,69	47,76	955,84	34.154,43			
ESTACA 322	68,17	1.248,28	22.166,97	46,69	944,41	35.098,84			
ESTACA 323	83,32	1.514,90	23.681,87	48,51	951,93	36.050,77			
ESTACA 324	105,23	1.885,55	25.567,42	49,05	975,54	37.026,32			
ESTACA 325	140,91	2.461,40	28.028,81	52,73	1.017,80	38.044,12			
ESTACA 326	165,41	3.063,18	31.091,99	56,12	1.088,55	39.132,66			
ESTACA 327	189,14	3.545,52	34.637,50	60,13	1.162,49	40.295,16			
ESTACA 328	220,36	4.094,99	38.732,49	63,25	1.233,76	41.528,92			
ESTACA 329	265,23	4.855,85	43.588,35	64,42	1.276,68	42.805,59			

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

INFRAS SON BOWLEY

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

	VOLUME DE PROJETO			VO	LUME TOL	VOLUME TOLERÂNCIA			
		-14,0 m (D	HN)	VERTICAL 0,50 M + TALUDES					
	sc	LEIRA + TA	ALUDES						
ESTACAS	ÁREA	ÁREA VOLUME VOLUME		ÁREA VOLUME		VOLUME			
	DA	DA	VOLUME ACUMULADO	DA	DA	VOLUME ACUMULADO			
	<u>SEÇÃO</u>	<u>SEÇÃO</u>	[m³]	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO [m³]			
	[m²]	[m³]		[m²]	[m³]				
ESTACA 330	311,22			68,18	1.326,01	44.131,60			
ESTACA 331	328,06	6.392,79	55.745,65	69,31	1.374,95	45.506,55			
ESTACA 332	320,79	6.488,48	62.234,13	70,34	1.396,56	46.903,12			
ESTACA 333	323,31	6.441,02	68.675,15	70,39	1.407,30	48.310,41			
ESTACA 334	346,37	6.696,79	75.371,94	72,55	1.429,34	49.739,75			
ESTACA 335	339,08	6.854,50	82.226,44	72,91	1.454,52	51.194,27			
ESTACA 336	327,69	6.667,67	88.894,12	75,09	1.479,96	52.674,23			
ESTACA 337		6.427,97	95.322,08	75,85	1.509,39	54.183,62			
ESTACA 338	339,35	6.544,58	101.866,67	77,05	1.528,98	55.712,61			
ESTACA 339	342,81	6.821,59	108.688,25	74,78	1.518,29	57.230,89			
ESTACA 340	339,74	6.825,53	115.513,78	95,76	1.705,41	58.936,31			
ESTACA 341	340,09	6.798,28	122.312,06	98,38	1.941,41	60.877,72			
ESTACA 342	319,65	6.597,39	128.909,45	101,09	1.994,66	62.872,38			
ESTACA 343	305,14	6.247,94	135.157,38	100,37	2.014,57	64.886,95			
ESTACA 344	305,90	6.110,42	141.267,81	100,53	2.009,02	66.895,97			
ESTACA 345	308,32	6.142,24	147.410,04	101,16	2.016,97	68.912,95			
ESTACA 346	301,56	6.098,80	153.508,85	99,63	2.007,91	70.920,85			
ESTACA 347	326,58	6.281,39	159.790,23	101,03	2.006,59	72.927,44			
ESTACA 348	337,08	6.636,62	166.426,86	102,06	2.030,92	74.958,37			
ESTACA 349	354,82	6.919,04	173.345,90	101,17	2.032,33	76.990,70			
ESTACA 350	345,19	7.000,12	180.346,02	100,17	2.013,42	79.004,12			
ESTACA 351	340,81	6.859,97	187.205,99	100,22	2.003,86	81.007,97			
ESTACA 352	340,39	6.811,98	194.017,97	83,16	1.833,76	82.841,73			
ESTACA 353	347,33	6.877,19	200.895,16	84,45	1.676,06	84.517,79			
ESTACA 354	342,89	6.902,23	207.797,39	84,88	1.693,27	86.211,06			
ESTACA 355	314,87	6.577,61	214.375,01	83,12	1.679,99	87.891,05			
ESTACA 356	303,01	6.178,75	220.553,75	82,70	1.658,20	89.549,24			
ESTACA 357	317,02	6.200,28	226.754,03	84,92	1.676,18	91.225,42			
ESTACA 358	298,56	6.155,77	232.909,80	84,64	1.695,59	92.921,01			
ESTACA 359	325,67	6.242,30	239.152,10	82,95	1.675,92	94.596,93			
ESTACA 360	341,92	6.675,90	245.828,00	82,54	1.654,90	96.251,83			
ESTACA 361	341,46	6.833,74	252.661,74	83,04	1.655,81	97.907,64			
ESTACA 362	332,19	6.736,51	259.398,25	86,27	1.693,10	99.600,74			
ESTACA 363	311,51	6.437,03	265.835,28	88,93	1.751,93	101.352,67			
ESTACA 364	288,56	6.000,64	271.835,92	90,60	1.795,27	103.147,94			
ESTACA 365	269,57	5.581,21	277.417,12	90,36	1.809,60	104.957,54			
ESTACA 366	255,45	5.250,20	282.667,32	87,72	1.780,74	106.738,28			
ESTACA 367	232,12	4.875,70	287.543,02	87,61	1.753,28	108.491,56			
ESTACA 368	219,27	4.513,81	292.056,83	86,90	1.745,14	110.236,69			
ESTACA 369	202,13	4.213,93	296.270,76	88,51	1.754,13	111.990,82			
ESTACA 370	192,96	3.950,86	300.221,62	93,79	1.822,96	113.813,78			
ESTACA 371	162,27	3.552,29	303.773,91	83,73	1.775,20	115.588,98			

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

	VO	LUME DE P	ROJETO	VO	LUME TOL	ERÂNCIA	
		-14,0 m (D	HN)	VERTICAL 0,50 M + TALUDES			
	sc	LEIRA + TA					
ESTACAS	ÁREA	A VOLUME		ÁREA VOLUME		\/OLUME	
	DA	DA	VOLUME A CHMUII A DO	DA	DA	VOLUME	
	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO	
	[m²]	[m³]	[m³]	[m²]	[m³]	[m³]	
ESTACA 372	148,90	3.111,75	306.885,66	87,57	1.713,07	117.302,04	
ESTACA 373	148,22	2.971,23	309.856,89	88,06	1.756,34	119.058,39	
ESTACA 374	143,61	2.918,29	312.775,18	84,26	1.723,16	120.781,55	
ESTACA 375	140,53	2.841,35	315.616,53	80,72	1.649,78	122.431,33	
ESTACA 376	124,04	2.645,71	318.262,24	84,28	1.650,08	124.081,40	
ESTACA 377	113,51	2.375,58	320.637,82	81,63	1.659,15	125.740,55	
ESTACA 378	108,93	2.224,47	322.862,29	79,66	1.612,92	127.353,47	
ESTACA 379	103,27	2.122,03	324.984,33	79,16	1.588,17	128.941,65	
ESTACA 380	95,38	1.986,46	326.970,79	81,54	1.606,97	130.548,62	
ESTACA 381	98,99	1.943,63	328.914,41	79,36	1.609,00	132.157,62	
ESTACA 382	86,62	1.856,05	330.770,47	77,13	1.564,90	133.722,52	
ESTACA 383	92,53	1.791,53	332.562,00	76,48	1.536,08	135.258,60	
ESTACA 384	79,98	1.725,18	334.287,18	72,40	1.488,74	136.747,34	
ESTACA 385	77,77	1.577,54	335.864,72	71,82	1.442,16	138.189,50	
ESTACA 386	75,24	1.530,10	337.394,82	72,35	1.441,72	139.631,22	
ESTACA 387	80,28	1.555,16	338.949,97	72,41	1.447,64	141.078,86	
ESTACA 388	115,31	1.955,83	340.905,81	74,68	1.470,88	142.549,74	
ESTACA 389	163,44	2.787,45	343.693,25	76,20	1.508,81	144.058,55	
ESTACA 390	168,73	3.321,65	347.014,90	79,19	1.553,97	145.612,52	
ESTACA 391	163,08	3.318,07	350.332,96	83,16	1.623,52	147.236,05	
ESTACA 392	142,72	3.058,00	353.390,96	86,38	1.695,43	148.931,48	
ESTACA 393	121,23	2.639,46	356.030,42	89,76	1.761,44	150.692,92	
ESTACA 394	98,95	2.201,79	358.232,22	88,33	1.780,95	152.473,87	
ESTACA 395	90,66	1.896,11	360.128,32	86,11	1.744,44	154.218,32	
ESTACA 396	80,51	1.711,70	361.840,02	85,46	1.715,71	155.934,03	
ESTACA 397	69,24	1.497,58	363.337,60	84,98	1.704,44	157.638,47	
ESTACA 398	63,58	1.328,28	364.665,88	85,34	1.703,18	159.341,65	
ESTACA 399	61,06	1.246,47	365.912,35	78,73	1.640,63	160.982,28	
ESTACA 400	57,55	1.186,18	367.098,53	80,70	1.594,29	162.576,57	
ESTACA 401	50,62	1.081,74	368.180,27	71,40	1.520,98	164.097,56	
ESTACA 402	50,26	1.008,79	369.189,07	72,05	1.434,47	165.532,03	
ESTACA 403	50,60	1.008,60	370.197,67	70,70	1.427,51	166.959,53	
ESTACA 404	54,23	1.048,29	371.245,96	75,49	1.461,86	168.421,39	
ESTACA 405	50,56	1.047,90	372.293,86	74,45	1.499,39	169.920,78	
ESTACA 406	47,67	982,30	373.276,16	72,97	1.474,24	171.395,02	
ESTACA 407	49,35	970,20	374.246,36	74,25	1.472,21	172.867,23	
ESTACA 408	45,42	947,75	375.194,11	75,97	1.502,21	174.369,43	
ESTACA 409	45,14	905,66	376.099,76	71,00	1.469,71	175.839,14	
ESTACA 410	45,83	909,73	377.009,49	74,75	1.457,46	177.296,60	
ESTACA 411	41,97	878,04	377.887,53	71,25	1.460,00	178.756,60	
ESTACA 412	43,52	854,98	378.742,51	73,91	1.451,64	180.208,24	
ESTACA 413	41,37	848,95	379.591,46	74,08	1.479,93	181.688,17	

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

	VO	LUME DE P	ROJETO	VO	VOLUME TOLERÂNCIA			
	<u></u>	-14,0 m (D			VERTICAL 0,50 M + TALUDES			
	SO			<u> </u>	<u></u>			
ESTACAS	SOLEIRA + TALUDES ÁREA VOLUME			ÁREA VOLUME				
	DA	DA	<u>VOLUME</u>	DA	DA	<u>VOLUME</u>		
	SEÇÃO	SEÇÃO	<u>ACUMULADO</u>	SEÇÃO	SEÇÃO	<u>ACUMULADO</u>		
	<u>o z y t o</u> [m²]	[m ³]	[m³]	[m²]	[m ³]	[<u>m³]</u>		
ESTACA 414	36,20	775,70	380.367,16	76,92	1.510,03	183.198,19		
ESTACA 415	36,40	725,95	381.093,12	75,63	1.525,48	184.723,68		
ESTACA 416	34,45	708,41	381.801,53	70,43	1.460,54	186.184,22		
ESTACA 417	37,11	715,57	382.517,09	72,57	1.430,00	187.614,21		
ESTACA 418	41,13	782,43	383.299,53	74,49	1.470,63	189.084,85		
ESTACA 419	38,80	799,36	384.098,89	72,19	1.466,84	190.551,69		
ESTACA 420	47,78	865,82	384.964,71	79,59	1.517,89	192.069,58		
ESTACA 421	45,51	932,93	385.897,64	77,60	1.571,94	193.641,52		
ESTACA 422	46,02	915,37	386.813,02	79,87	1.574,67	195.216,18		
ESTACA 423	53,77	997,93	387.810,95	82,44	1.623,06	196.839,24		
ESTACA 424	52,09	1.058,59	388.869,54	86,13	1.685,68	198.524,92		
ESTACA 425	44,16	962,50	389.832,04	86,83	1.729,65	200.254,57		
ESTACA 426	40,78	849,42	390.681,46	82,81	1.696,48	201.951,05		
ESTACA 427	44,86	856,43	391.537,89	85,96	1.687,77	203.638,81		
ESTACA 428	48,68	935,39	392.473,28	85,44	1.714,01	205.352,82		
ESTACA 429	55,92	1.045,98	393.519,27	90,17	1.756,08	207.108,91		
ESTACA 430	65,04	1.209,61	394.728,88	91,04	1.812,11	208.921,01		
ESTACA 431	71,66	1.367,03	396.095,91	92,97	1.840,12	210.761,14		
ESTACA 432	75,90	1.475,62	397.571,54	91,29	1.842,65	212.603,78		
ESTACA 433	90,58	1.664,84	399.236,38	92,95	1.842,39	214.446,17		
ESTACA 434	83,19	1.737,76	400.974,14	95,31	1.882,57	216.328,74		
ESTACA 435	54,47	1.376,61	402.350,75	93,07	1.883,83	218.212,57		
ESTACA 436	50,36	1.048,27	403.399,02	89,97	1.830,44	220.043,01		
ESTACA 437	54,35	1.047,12	404.446,14	93,34	1.833,08	221.876,09		
ESTACA 438	57,54	1.118,96	405.565,11	91,56	1.848,92	223.725,00		
ESTACA 439	64,00	1.215,41	406.780,52	92,28	1.838,34	225.563,34		
ESTACA 440	71,80	1.357,97	408.138,49	95,24	1.875,14	227.438,48		
ESTACA 441	77,83	1.496,32	409.634,81	96,12	1.913,52	229.352,00		
ESTACA 442	80,86	1.586,93	411.221,73	96,25	1.923,70	231.275,70		
ESTACA 443	79,28	1.601,38	412.823,11	96,94	1.931,99	233.207,69		
ESTACA 444	81,10	1.603,79	414.426,90	97,16	1.941,05	235.148,74		
ESTACA 445	81,93	1.630,25	416.057,15	96,17	1.933,27	237.082,01		
ESTACA 446	88,91	1.708,40	417.765,55	96,12	1.922,90	239.004,91		
ESTACA 447	93,61	1.825,25	419.590,80	95,98	1.921,01	240.925,92		
ESTACA 448	98,74	1.923,54	421.514,33	96,94	1.929,20	242.855,12		
ESTACA 449	110,00	2.087,44	423.601,78	97,59	1.945,31	244.800,43		
ESTACA 450	108,77	2.187,72	425.789,49	99,12	1.967,13	246.767,56		
ESTACA 451	118,16	2.269,28	428.058,77	100,60	1.997,24	248.764,80		
ESTACA 452	113,87	2.320,23	430.379,00	101,16	2.017,64	250.782,44		
ESTACA 453	116,34	2.302,04	432.681,04	103,60	2.047,69	252.830,12		
ESTACA 454	112,08	2.284,22	434.965,26	101,40	2.050,09	254.880,21		
ESTACA 455	99,15	2.112,31	437.077,57	102,12	2.035,25	256.915,46		

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

	VO	LUME DE P	ROJETO	VO	LUME TOL	ERÂNCIA
	<u></u>	-14,0 m (D		VERTICAL 0,50 M + TALUDES		
	sc	LEIRA + T <i>A</i>		<u></u>		
ESTACAS	ÁREA VOLUME VOLUME			ÁREA VOLUME		
	DA	DA	<u>VOLUME</u>	DA	DA	<u>VOLUME</u>
	SEÇÃO	SEÇÃO	<u>ACUMULADO</u>	SEÇÃO	SEÇÃO	<u>ACUMULADO</u>
	<u>52 Q/15</u> [m²]	[m ³]	[m³]	[m²]	[m ³]	[m³]
ESTACA 456	97,62	1.967,69	439.045,26	100,80	2.029,17	258.944,64
ESTACA 457	90,20	1.878,25	440.923,50	101,12	2.019,13	260.963,76
ESTACA 458	94,29	1.844,91	442.768,41	99,94	2.010,54	262.974,30
ESTACA 459	97,28	1.915,66	444.684,07	102,90	2.028,39	265.002,70
ESTACA 460	104,75	2.020,28	446.704,35	100,86	2.037,60	267.040,30
ESTACA 461	93,95	1.986,99	448.691,34	102,38	2.032,36	269.072,66
ESTACA 462	120,85	2.147,94	450.839,28	102,66	2.050,37	271.123,03
ESTACA 463	113,26	2.341,06	453.180,34	102,60	2.052,63	273.175,66
ESTACA 464	108,96	2.222,24	455.402,58	100,36	2.029,61	275.205,27
ESTACA 465	106,82	2.157,85	457.560,43	100,35	2.007,06	277.212,33
ESTACA 466	111,70	2.185,18	459.745,61	102,43	2.027,77	279.240,10
ESTACA 467	113,08	2.247,74	461.993,35	103,22	2.056,48	281.296,59
ESTACA 468	115,35	2.284,23	464.277,57	103,36	2.065,76	283.362,35
ESTACA 469	129,58	2.449,26	466.726,83	104,82	2.081,76	285.444,11
ESTACA 470	130,41	2.599,95	469.326,78	106,81	2.116,28	287.560,39
ESTACA 471	129,58	2.599,98	471.926,77	107,14	2.139,45	289.699,84
ESTACA 472	144,42	2.740,08	474.666,85	108,69	2.158,23	291.858,07
ESTACA 473	145,35	2.897,70	477.564,54	107,62	2.163,03	294.021,10
ESTACA 474	158,96	3.043,03	480.607,57	105,75	2.133,69	296.154,80
ESTACA 475	146,96	3.059,14	483.666,71	105,27	2.110,23	298.265,03
ESTACA 476	116,35	2.633,06	486.299,77	101,00	2.062,67	300.327,69
ESTACA 477	95,60	2.119,50	488.419,27	99,99	2.009,90	302.337,59
ESTACA 478	94,55	1.901,49	490.320,76	99,32	1.993,10	304.330,69
ESTACA 479	83,01	1.775,64	492.096,40	97,84	1.971,56	306.302,25
ESTACA 480	67,70	1.507,16	493.603,56	96,40	1.942,38	308.244,64
ESTACA 481	62,21	1.299,17	494.902,73	95,46	1.918,56	310.163,20
ESTACA 482	61,81	1.240,24	496.142,97	89,08	1.845,34	312.008,54
ESTACA 483	50,19	1.119,96	497.262,93	92,50	1.815,79	313.824,33
ESTACA 484	49,08	992,65	498.255,58	86,59	1.790,93	315.615,26
ESTACA 485	48,55	976,25	499.231,83	88,41	1.750,03	317.365,29
ESTACA 486	42,08	906,29	500.138,13	88,04	1.764,57	319.129,86
ESTACA 487	52,51	945,91	501.084,03	86,79	1.748,37	320.878,23
ESTACA 488	51,23	1.037,37	502.121,40	89,41	1.762,02	322.640,25
ESTACA 489	49,55	1.007,81	503.129,21	88,85	1.782,53	324.422,78
ESTACA 490	42,58	921,28	504.050,50	76,85	1.656,91	326.079,68
ESTACA 491	40,98	835,54	504.886,04	80,45	1.572,99	327.652,67
ESTACA 492	52,51	934,92	505.820,96	82,58	1.630,33	329.283,00
ESTACA 493	53,36	1.058,77	506.879,73	79,05	1.616,30	330.899,29
ESTACA 494	46,39	997,52	507.877,25	73,05	1.520,98	332.420,27
ESTACA 495	48,52	949,11	508.826,35	82,32	1.553,71	333.973,98
ESTACA 496	48,02	965,48	509.791,83	80,11	1.624,32	335.598,30
ESTACA 497	57,77	1.057,98	510.849,81	85,89	1.660,01	337.258,31

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

	VO	LUME DE P	ROJETO	VO	LUME TOL	ERÂNCIA
		-14,0 m (D	HN)	VERTI	CAL 0,50 M	+ TALUDES
	sc	LEIRA + TA	ALUDES			
ESTACAS	ÁREA	VOLUME	VOLUME	ÁREA	VOLUME	VOLUME
	DA	DA	VOLUME ACUMULADO	DA	DA	VOLUME ACUMULADO
	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO [m³]	<u>SEÇÃO</u>	<u>SEÇÃO</u>	ACUMULADO [m³]
	[m²]	[m³]	1111-1	[m²]	[m³]	1111-1
ESTACA 498	35,86	936,32	511.786,13	72,89	1.587,84	338.846,15
ESTACA 499	35,60	714,60	512.500,73	67,45	1.403,42	340.249,57
ESTACA 500	39,08	746,81	513.247,54	80,85	1.482,96	341.732,53
ESTACA 501	27,02	660,99	513.908,53	70,98	1.518,23	343.250,75
ESTACA 502	41,76	687,81	514.596,34	91,10	1.620,79	344.871,55
ESTACA 503	28,00	697,61	515.293,95	68,04	1.591,43	346.462,97
ESTACA 504	28,62	566,19	515.860,15	71,37	1.394,07	347.857,05
ESTACA 505	33,27	618,92	516.479,07	65,92	1.372,91	349.229,95
ESTACA 506	36,40	696,69	517.175,76	61,79	1.277,15	350.507,11
ESTACA 507	32,67	690,65	517.866,41	64,77	1.265,60	351.772,70
ESTACA 508	26,31	589,72	518.456,13	67,89	1.326,59	353.099,29
ESTACA 509	36,71	630,15	519.086,28	69,98	1.378,70	354.477,98
ESTACA 510	33,06	697,70	519.783,98	57,74	1.277,18	355.755,16
ESTACA 511	31,33	643,94	520.427,93	71,01	1.287,50	357.042,66
ESTACA 512	40,10	714,38	521.142,31	65,21	1.362,23	358.404,89
ESTACA 513	41,10	812,04	521.954,35	62,05	1.272,66	359.677,55
ESTACA 514	46,62	877,19	522.831,54	70,85	1.329,06	361.006,61
ESTACA 515	27,95	745,70	523.577,24	56,12	1.269,74	362.276,35
ESTACA 516	28,28	562,31	524.139,55	66,42		363.501,78
ESTACA 517	35,11	633,96	524.773,51	66,61	1.330,29	364.832,07
ESTACA 518	33,81	689,22	525.462,73	63,83	1.304,38	366.136,45
ESTACA 519	35,44	692,50	526.155,23	· · · · · ·	367.401,02	
ESTACA 520	29,26	647,00	526.802,23	62,68	1.253,04	368.654,06
ESTACA 521	39,34	685,94	527.488,17	70,08	1.327,57	369.981,63
ESTACA 522	28,63	679,63	528.167,80	64,22	1.343,00	371.324,63
ESTACA 523	47,48	761,09	528.928,89	64,91	1.291,25	372.615,88
ESTACA 524	38,08	855,59	529.784,48	65,16	1.300,69	373.916,57
ESTACA 525	39,88	779,56	530.564,04	67,27	1.324,36	375.240,92
ESTACA 526	41,04	809,17	531.373,21	65,45	1.327,26	376.568,18
ESTACA 527	36,44	774,77	532.147,97	63,22	1.286,70	377.854,88
ESTACA 528	53,50	899,45	533.047,42	66,84	1.300,60	379.155,48
ESTACA 529	49,11	1.026,10	534.073,52	67,37	1.342,18	380.497,66
ESTACA 530	41,32	904,21	534.977,73	69,76	1.371,38	381.869,04
ESTACA 531	49,05	903,70	535.881,43	76,85	1.466,13	383.335,17
ESTACA 532	45,61	946,64	536.828,07	76,58	1.534,33	384.869,50
ESTACA 533	51,30	969,14	537.797,22	67,21	1.437,92	386.307,42
ESTACA 534	39,31	906,17	538.703,38	70,63	1.378,38	387.685,80
ESTACA 535	50,18	894,90	539.598,28	74,19	1.448,15	389.133,95
ESTACA 536	48,37	985,48	540.583,76	72,59	1.467,72	390.601,67
ESTACA 537	40,64	890,08	541.473,83	78,99	1.515,82	392.117,49
ESTACA 538	39,23	798,73	542.272,56	73,86	1.528,56	393.646,04
ESTACA 539	43,93	831,62	543.104,18	72,29	1.461,55	395.107,59

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

	VOLUME DE PROJETO		VOLUME TOLERÂNCIA				
		-14,0 m (D	<u>HN)</u>	VERT	VERTICAL 0,50 M + TALUDES		
	so	LEIRA + TA	ALUDES				
ESTACAS	ÁREA	VOLUME	VOLUME	ÁREA	VOLUME	VOLUME	
	DA	DA	<u>VOLUME</u> ACUMULADO	DA	DA	<u>VOLUME</u> ACUMULADO	
	<u>SEÇÃO</u>	<u>SEÇÃO</u>	[m³]	<u>SEÇÃO</u>	<u>SEÇÃO</u>	[m³]	
	[m²]	[m³]		[m²]	[m³]		
ESTACA 540	36,25	801,76	543.905,94	72,73	1.450,24	396.557,84	
ESTACA 541	48,10	843,53	544.749,47	74,46	1.471,94	398.029,78	
ESTACA 542	38,14	862,45	545.611,91	72,16	1.466,23	399.496,00	
ESTACA 543	45,47	836,12	546.448,04	71,09	1.432,49	400.928,50	
ESTACA 544	63,40	1.088,72	547.536,76	83,49	1.545,79	402.474,29	
ESTACA 545	42,25	1.056,54	548.593,30	77,28	1.607,73	404.082,02	
ESTACA 546	40,91	831,62	549.424,91	77,26	1.545,41	405.627,43	
ESTACA 547	42,37	832,78	550.257,69	69,81	1.470,68	407.098,11	
ESTACA 548	42,01	843,76	551.101,45	81,71	1.515,19	408.613,30	
ESTACA 549	39,20	812,12	551.913,57	75,78	1.574,88	410.188,19	
ESTACA 550	43,42	826,27	552.739,85	80,56	1.563,39	411.751,58	
ESTACA 551	45,57	889,92	553.629,77	75,33	1.558,84	413.310,42	
ESTACA 552	36,89	824,61	554.454,38	82,30	1.576,22	414.886,64	
ESTACA 553	45,48	823,74	555.278,12	81,32	1.636,14	416.522,78	
ESTACA 554	43,34	888,27	556.166,39	79,78	1.610,94	418.133,72	
ESTACA 555	30,20	735,43	556.901,82	77,46	1.572,40	419.706,12	
ESTACA 556	34,96	651,56	557.553,38	79,69	1.571,58	421.277,70	
ESTACA 557	31,00	659,55	558.212,93	80,56	1.602,52	422.880,22	
ESTACA 558	33,32	643,19	558.856,12	79,63	1.601,92	424.482,14	
ESTACA 559	31,95	652,71	559.508,83	81,65	1.612,89	426.095,03	
ESTACA 560	36,59	685,38	560.194,21	82,21	1.638,63	427.733,66	
ESTACA 561	25,81	624,00	560.818,22	73,37	1.555,77	429.289,43	
ESTACA 562	23,52	493,29	561.311,50	82,50	1.558,72	430.848,15	
ESTACA 563	33,86	573,73	561.885,23	79,05	1.615,59	432.463,74	
ESTACA 564	24,57	584,26	562.469,49	79,85	1.589,01	434.052,75	
ESTACA 565	40,13	646,99	563.116,49	81,46	1.613,05	435.665,80	
ESTACA 566	17,40	575,26	563.691,75	78,91	1.603,66	437.269,46	
ESTACA 567	18,84	362,34	564.054,08	75,99	1.548,95	438.818,41	
ESTACA 568	19,06	378,94	564.433,02	74,55	1.505,41	440.323,82	
ESTACA 569	29,22	482,82	564.915,84	80,18	1.547,28	441.871,10	
ESTACA 570	35,23	644,57	565.560,42	81,21	1.613,87	443.484,97	
ESTACA 571	23,98	592,10	566.152,52	79,70	1.609,07	445.094,04	
ESTACA 572	34,13	581,06	566.733,58	83,54	1.632,39	446.726,43	
ESTACA 573	19,61	537,35	567.270,93	76,30	1.598,40	448.324,83	
ESTACA 574	21,37	409,81	567.680,73	79,06	1.553,54	449.878,37	
ESTACA 575	21,04	424,12	568.104,85	76,88	1.559,43	451.437,80	
ESTACA 576	16,30	373,41	568.478,26	75,70	1.525,82	452.963,62	
ESTACA 577	20,02	363,24	568.841,50	77,53	1.532,27	454.495,89	
ESTACA 578	11,81	318,33	569.159,83	75,57	1.530,96	456.026,85	
ESTACA 579	10,85	226,60	569.386,43	74,46	1.500,25	457.527,10	
ESTACA 580	5,60	164,44	569.550,87	71,38	1.458,41	458.985,50	
ESTACA 581	6,05	116,50	569.667,37	74,94	1.463,20	460.448,70	
	0,00	1.0,00	000.001,01	,		100.110,70	

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

.....

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

3

FOLHA:

	VOLUME DE PROJETO			<u>vo</u>	<u>VOLUME TOLERÂNCIA</u>		
		<u>-14,0 m (D</u>	<u>HN)</u>	<u>VERTI</u>	VERTICAL 0,50 M + TALUDES		
	SOLEIRA + TALUDES						
<u>ESTACAS</u>	ÁREA	VOLUME	VOLUME	ÁREA	VOLUME	VOLUME	
	DA	DA	ACUMULADO	DA	DA	VOLUME ACUMULADO	
	<u>SEÇÃO</u>	<u>SEÇÃO</u>	[m³]	<u>SEÇÃO</u>	<u>SEÇÃO</u>	[m³]	
	[m²]	[m³]		[m²]	[m³]		
ESTACA 582	7,00	130,52	569.797,89	72,64	1.475,79	461.924,49	
ESTACA 583	8,39	153,92	569.951,81	71,45	1.440,89	463.365,38	
ESTACA 584	3,92	123,09	570.074,90	73,55	1.450,01	464.815,40	
ESTACA 585	6,45	103,69	570.178,59	71,26	1.448,14	466.263,54	
ESTACA 586	8,47	149,23	570.327,82	71,42	1.426,82	467.690,36	
ESTACA 587	2,09	105,57	570.433,39	65,92	1.373,38	469.063,74	
ESTACA 588	0,93	30,14	570.463,54	68,10	1.340,19	470.403,93	
ESTACA 589	4,22	51,52	570.515,06	73,07	1.411,73	471.815,65	
ESTACA 590	0,00	42,27	570.557,33	58,10	1.311,67	473.127,32	
ESTACA 591	0,00	0,04	570.557,38	59,49	1.175,82	474.303,15	
ESTACA 592	10,67	106,72	570.664,10	67,32	1.268,10	475.571,25	
ESTACA 593	0,27	109,39	570.773,49	60,54	1.278,62	476.849,87	
ESTACA 594	5,21	54,79	570.828,28	67,33	1.278,70	478.128,57	
ESTACA 595	1,61	68,17	570.896,46	60,49	1.278,22	479.406,79	
ESTACA 596	3,40	50,04	570.946,50	61,31	1.217,96	480.624,75	
ESTACA 597	0,71	41,03	570.987,53	64,84	1.261,45	481.886,20	
ESTACA 598	3,44	41,47	571.029,00	62,54	1.273,76	483.159,96	
ESTACA 599	1,08	45,22	571.074,23	51,32	1.138,56	484.298,52	
ESTACA 600	0,00	10,83	571.085,06	53,07	1.043,86	485.342,37	
ESTACA 601	0,00	0,04	571.085,10	45,03	980,93	486.323,30	
ESTACA 602	0,00	0,02	571.085,12	52,84	978,70	487.302,00	
ESTACA 603	5,25	52,50	571.137,61	51,11	1.039,53	488.341,54	
ESTACA 604	2,29	75,39	571.213,00	55,04	1.061,51	489.403,05	
ESTACA 605	0,00	22,89	571.235,89	36,14	911,83	490.314,88	
ESTACA 606	0,76	7,59	571.243,48	31,72	678,64	490.993,53	
ESTACA 607	0,00	7,59	571.251,07	22,90	546,19	491.539,72	
ESTACA 608	0,00	0,00	571.251,07	27,33	502,26	492.041,98	
ESTACA 609	0,00	0,00	571.251,07	16,61	439,38	492.481,36	
ESTACA 610	0,02	0,17	571.251,25	23,17	397,81	492.879,18	
ESTACA 611	0,00	0,17	571.251,42	12,80	359,70	493.238,88	
ESTACA 612	0,00	0,00	571.251,42	10,90	236,96	493.475,84	
ESTACA 613	0,00	0,00	571.251,42	2,07	129,74	493.605,58	
ESTACA 614	0,00	0,00	571.251,42	2,71	47,88	493.653,46	
ESTACA 615	0,00	0,00	571.251,42	0,00	27,15	493.680,60	
ESTACA 616	0,00	0,00	571.251,42	0,00	0,00	493.680,60	
ESTACA 617	0,00	0,00	571.251,42	0,00	0,00	493.680,60	

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS SON SEN HARIA

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV: **3**

FOLHA:

117/132

7.3.4. RESUMO

Na Tabela 20 a seguir é apresentado um resumo com os volumes calculados para dragagem em cada uma das áreas relacionadas, separadamente entre os volumes referentes à soleira, taludes e suas respectivas tolerâncias.

Tabela 20. Resumo dos Volumes para dragagem.

VOLUME A SEREM REMOVIDOS <i>IN SITU</i> PARA A DISPOSIÇÃO EM BOTA-FORA						
	sc	LEIRA	TALUDES			
ÁREA	PROJETO (m³)	TOLERÂNCIA (m³)	PROJETO (m³)	TOLERÂNCIA (m³)		
CANAL EXTERNO	323.889,05	388.586,20	247.362,37	105.094,40		
CANAL INTERNO	5.059,05	144.517,74	1.881,44	8.793,83		
DÁRSENA E BACIA DE EVOLUÇÃO	290.920,21	79.026,57	3.815,14	2.576,22		
TOTAL	1.231.998,82 369.523,40					
TOTAL GERAL	1.601.522,22					

8. DRAGAGEM DE MANUTENÇÃO

8.1. ATIVIDADE DE DRAGAGEM

Esta dragagem tem por finalidade a manutenção da profundiade do Canal Externo, Canal Interno e Dársena e Bacia de Evolução, sendo esta de -14,0 m (DHN). Já é de conhecimento que próximo a linha de paramento, na borda do cais, existe material consolidado que não foi possível retirar com draga *hopper* em atividades anteriores.

8.2. CARACTERISTICAS GERAIS

As características específicas e exatas do volume da cisterna, volume do tanque de combustível, calado, comprimento e boca dos equipamentos de dragagem, bem como dos equipamentos auxiliares, serão definidas mediante à contratação da empresa de dragagem, uma vez que esses parâmetros variam para cada equipamento. No entanto, na sequência deste documento, são apresentados os tipos e requisitos mínimos a serem considerados nos equipamentos de dragagem e descarte.

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

3

FOLHA:

REV:

118/132

Além disso, é importante observar que, para otimizar os trabalhos de dragagem, podem ser adotadas diversas configurações e equipamentos, que variam de acordo com a logística e a disponibilidade de equipamentos de cada empresa, bem como a disponibilidade do mercado no momento da contratação e realização das obras. De toda forma, os tipos e requisitos mínimos dos equipamentos a serem considerados na execução das obras são apresentados na sequência deste memorial descritivo.

A execução das atividades deverá considerar as orientações a serem solicitadas pelo IBAMA, no momento da emissão da Autorização para a realização da dragagem de manutenção, em atendimento à condicionante específica 2.7 da Licença de Operação Nº 548/2006 – 2ª Renovação (2ª Retificação). Nesta Autorização, o órgão ambiental licenciador estabelece os meios de controle e monitoramento que deverão ser aplicados à atividade de dragagem de manutenção, com o objetivo de garantir a qualidade ambiental da área de influência das obras.

8.3. DESCRIÇÃO DO EQUIPAMENTO DE DRAGAGEM - DRAGAGEM HIDRÁULICA DO SISTEMA AQUAVIÁRIO COM DRAGA DE SUCÇÃO AUTOTRANSPORTADORA E DESCARTE EM ÁREA MARINHA

Para atingir as cotas de profundidade de -14,0m DHN previstas para a dragagem de manutenção, serão utilizadas dragas de sucção do tipo *hopper*. Tendo em vista a imprecisão do equipamento, há uma tolerância de 0,5 m que foi considerada na elaboração deste relatório de dragagem.

Tendo em vista os equipamentos de dragagem disponíveis, são considerados adequados para a realização dos serviços de dragagem equipamentos com um volume de cisterna mínimo de 3.000 m³, e que atendam aos requisitos ambientais (como a existência de uma "válvula verde" e a profundidade de alcance de dragagem compatível com as cotas a serem dragadas).

Porém, considerando as questões de ordem econômica, tendo em vista a distância de deslocamento, recomenda-se a utilização de uma draga de sucção autotransportadora com um volume de cisterna mínimo de 10.000 m³. É importante destacar, no entanto, que deve ser considerada a possibilidade de utilização de dragas menores, a partir do volume mínimo de cisterna de 3.000 m³, assim como dragas de maior porte, considerando questões de oportunidade comercial, que poderão ocasionar significativas reduções de custo para as obras de dragagem. Entende-se como oportunidade comercial a eventual disponibilidade de equipamentos mobilizados para a realização de obras próximas, que podem ser convenientes para serem aproveitados para a realização da dragagem de manutenção do Porto de São Francisco do Sul.

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV: **3**

FOLHA:

119/132

O material dragado por esta técnica deverá ser descartado na área marinha do bota-fora, descrito no capítulo 5 deste relatório. É importante destacar que o volume dragado pode sofrer variações, cabendo à empresa especialmente contratada pela SCPar - Porto de São Francisco do Sul para a fiscalização da dragagem avaliar, medir e monitorar este volume.

A draga do tipo autotransportadora de sucção e arrasto (*Traling Suction Hopper Dredge* - TSHD) é proposta mediante à análise das características deste Plano de Dragagem, incluindo a distância entre a área de bota-fora e a área de dragagem, as profundidades e as características sedimentológicas das áreas a serem dragadas.

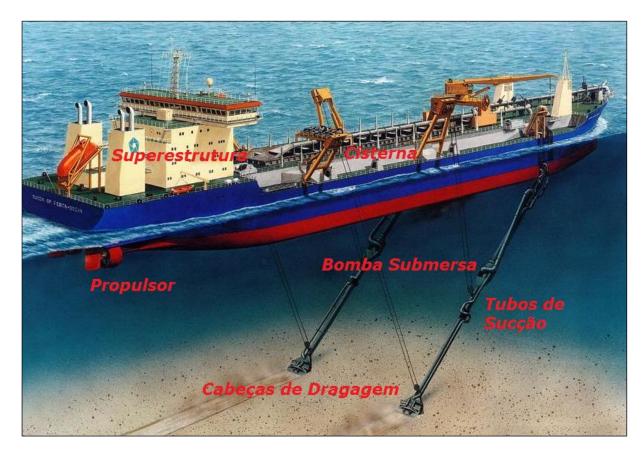


Figura 42. Ilustração esquemática de uma draga de sucção por arrasto do tipo autotransportadora (TSHD), com representação das partes mais relevantes à dragagem.

O descarte na área de bota-fora marinho deverá ser realizado por meio da abertura da cisterna de fundo da draga autotransportadora, fazendo o descarte por meio de gravidade, conforme ilustrado na Figura 43 e Figura 44.

Figura 43. Ciclo de produção de uma draga autotransportadora de sucção - TSHD.

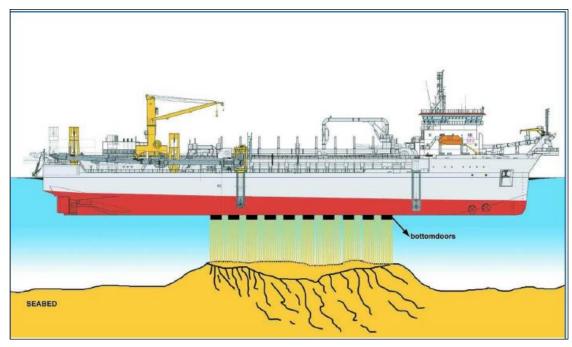


Figura 44. Diagrama esquemático da atividade de descarte de material dragado via abertura das portas da cisterna no fundo do casco da draga autotransportadora. Fonte, Jan de Nul.

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV: **3**

FOLHA:

121/132

Cada cabeça de dragagem é nivelada próxima ou abaixo do nível de interesse. Desta maneira, a dragagem se inicia com baixa velocidade de navegação. A sucção é produzida por bombas hidráulicas ou elétricas específicas para dragagem, situadas dentro do casco ou ainda acopladas nas articulações dos braços do tubo de sucção. A tubulação que sai da boca de descarga da bomba de dragagem prossegue conduzindo o material até a cisterna da draga. A descarga do material para a cisterna se faz através de calhas que visam reduzir a turbulência e, assim, permitir uma maior decantação dos sólidos. O bombeamento do material dragado prossegue com a draga navegando a baixa velocidade, concomitantemente ao processo de dragagem, até que a cisterna esteja cheia, ou atinja um nível de carga ideal. Quando a cisterna atinge a carga pretendida, os tubos de sucção são recolhidos a bordo e são armazenados em seus alojamentos (berços), enquanto a draga navega.

Como equipamento auxiliar também pode ser feito o uso de nivelador de fundo (também denominado *plough*, ou *bed leveler*) com o objetivo de remover as irregularidades do fundo ou transferir sedimentos em áreas de difícil acesso. Destaca-se que o uso desse equipamento é limitado em auxiliar a draga *hopper* em seus trabalhos de dragagem, não sendo permitido seu uso como equipamento primário de dragagem.

9. METODOLOGIA EXECUTIVA - CANTEIRO DE OBRAS, INFRAESTRUTURA DE APOIO E INSUMOS

Não será necessário estabelecer um canteiro de obras para a execução das operações de dragagem. O equipamento de dragagem já inclui as peças de reposição e a equipe de manutenção necessária para eventuais reparos durante a realização das atividades.

Como suporte, será utilizada uma embarcação de hidrografia para realizar levantamentos hidrográficos (batimetria) e fiscalizar o progresso e conclusão das obras. Além disso, uma pequena embarcação será necessária para trocas de tripulação e equipe de fiscalização a bordo do equipamento de dragagem.

Os insumos para a operação de dragagem consistem em:

 Peças de reposição, como grades e dentes da cabeça de dragagem, que já estão disponíveis em reserva no equipamento de dragagem. Caso necessário, poderão ser adquiridas no comércio local e entregues por uma empresa especializada diretamente na área do Porto de São Francisco do Sul;

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR - PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:
3
FOLHA:
122/132

- Material de solda, também disponível em reserva no equipamento de dragagem, podendo ser adquirido no comércio local e entregue por uma empresa especializada na área do porto;
- Água potável para as necessidades básicas da tripulação embarcada, a ser abastecida por uma empresa especializada na área do Porto de São Francisco do Sul;
- Óleo lubrificante para equipamentos e motores, já disponível em reserva no equipamento de dragagem. Caso necessário, poderá ser adquirido no comércio local e entregue por uma empresa especializada diretamente na área do porto;
- Óleo combustível para abastecer os motores de propulsão da embarcação, que será fornecido por uma empresa especializada na área do Porto de São Francisco do Sul, conforme detalhes fornecidos a seguir.

O abastecimento de óleo combustível da draga autotransportadora será realizado por uma empresa especializada e credenciada para essa atividade na área do Porto de São Francisco do Sul. Alternativamente, o abastecimento pode ser feito em Paranaguá, estado vizinho do Paraná, o que pode impactar no cronograma das obras. Todos os procedimentos seguirão as orientações da Instrução Normativa N° 06/2011 da SCPar Porto de São Francisco do Sul, bem como as diretrizes da NORMAM N° 8, capítulo 3 e seção IV – DPC – MB, e as Normas e Procedimentos da Capitania dos Portos de Santa Catarina (NPCP – SC/2016).

As operações de abastecimento de óleo combustível só ocorrerão com a anuência de empresas especializadas em atendimento a emergências ambientais, credenciadas pela Autoridade Portuária, e devem apresentar a documentação necessária, incluindo:

- Licença Ambiental de Operação vigente; Plano de Combate a Emergências (PCE);
- Plano de Emergência Individual (PEI); Programa de Prevenção de Riscos Ambientais (PPRA);
- Programa de Controle Médico de Saúde Ocupacional (PCMSO);
- Registro na ANP;
- Certificação Técnica.

Durante toda a operação de abastecimento de óleo combustível, serão observados requisitos operacionais de emergência ambiental, tais como:

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

INFRAS ENGENHARIA

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:		
		3

FOLHA:

123/132

- Manter uma embarcação de apoio com recursos de emergências ambientais prontamente disponível no local para operações de transferência entre o cais e embarcações, incluindo operações com caminhão-tanque ou qualquer outro sistema de bombeamento de óleo;
- Manter um veículo utilitário com recursos de emergências ambientais prontamente disponível no local para transferências em terra e transferências para embarcações de óleos embalados individualmente;
- Garantir que as embarcações possam desatracar a qualquer momento em caso de emergência, com todos os sistemas de bloqueio de drenagem do convés ativados e vedados para evitar qualquer vazamento, fuga ou derramamento;
- Durante as operações de abastecimento de óleo combustível entre embarcações, seguir procedimentos específicos, como lançar barreiras de contenção de óleo no entorno das embarcações envolvidas ou manter uma embarcação dedicada no local com barreiras de contenção de óleo e pessoal qualificado para responder a incidentes de derramamento de óleo.

10. PROCEDIMENTOS GERAIS DE CONTROLE E ACOMPANHAMENTO - MONITORAMENTO E CONTROLE DAS ATIVIDADES DE DRAGAGEM

10.1. CONTROLE DE DRAGAGEM

10.1.1. PROGRAMA DE GESTÃO AMBIENTAL DA DRAGAGEM DE MANUTENÇÃO

No que diz respeito à implementação de medidas de controle e atividades de monitoramento para a dragagem de manutenção, é importante ressaltar que, conforme estabelecido na condicionante específica 2.7 da Licença de Operação Nº 548/2006 – 2ª Renovação (2ª Retificação), é necessário obter anuência prévia do IBAMA para a realização das dragagens de manutenção, conforme previsto no Programa de Gestão Ambiental da Dragagem de Manutenção, conforme previsto no Parecer 002243/2014 – COPAH/IBAMA.

É relevante destacar que este programa faz parte do Plano Básico Ambiental – PBA do Porto de São Francisco do Sul, conforme submetido à análise deste órgão ambiental por meio do Ofício SCPar Nº 0630, datado de 21 de agosto de 2018. Além disso, a execução deste programa está prevista no Contrato PSFS Nº 119/2016, firmado entre a SCPar Porto de São Francisco do Sul S.A. e a empresa

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:	
	3

FOLHA:

124/132

ACQUAPLAN Tecnologia e Consultoria Ambiental Ltda. para o desenvolvimento dos programas ambientais previstos pelo PBA.

Conforme delineado no Parecer Técnico Nº 002243/2014 – COPAH/IBAMA, este programa de monitoramento é composto por oito (08) subprogramas:

- I. Subprograma de Supervisão Ambiental da Dragagem;
- II. Subprograma de Monitoramento da Turbidez;
- III. Subprograma de Monitoramento do Volume Dragado;
- IV. Subprograma de Rastreamento da Draga;
- V. Subprograma de Comunicação Social;
- VI. Subprograma de Educação Ambiental para os Trabalhadores da Draga;
- VII. Subprograma de Gerenciamento de Resíduos e Efluentes da Draga; e,
- VIII. Subprograma de Atendimento a Emergências.

Adicionalmente, o Ofício Nº 02026.001002/2016-73 GABIN/SC/IBAMA, por meio do Parecer 02001.002553/2016-98, solicitou a inclusão de um subprograma de monitoramento complementar, o Subprograma de Monitoramento da Dragagem a partir de Sensores da Draga.

Além disso, em consonância com os demais programas ambientais já desenvolvidos no contexto da operação do Porto de São Francisco do Sul, novas ações de monitoramento e controle podem ser propostas pelo órgão ambiental no momento da emissão da Autorização de Dragagem de Manutenção, caso sejam consideradas necessárias.

10.1.2. DEMAIS AÇÕES DE CONTROLE SUGERIDAS

10.1.2.1.SINALIZAÇÃO NÁUTICA DA ÁREA A SER DRAGADA

A responsabilidade pela sinalização náutica da área a ser dragada será atribuída à empresa encarregada da execução dos serviços de dragagem, conforme estipulado contratualmente entre o empreendedor e a empresa contratada.

Todas as diretrizes relacionadas à sinalização náutica em áreas a serem dragadas serão rigorosamente seguidas, em conformidade com as Normas da Autoridade Marítima para Obras, Dragagens, Pesquisa e Lavra de Minerais sob, sobre e às margens de Águas Jurisdicionais Brasileiras

(NORMAM 11 - DPC), e as Normas da Autoridade Marítima para Auxílios à Navegação (NORMAM 17 - DHN).

10.1.2.2."GREEN VALVE"

A empresa responsável pela execução das obras de dragagem deverá incorporar obrigatoriamente o dispositivo de "válvula verde" no sistema de overflow do equipamento de dragagem. Conforme mostrado no diagrama esquemático da Figura 45, a válvula verde tem como propósito reduzir a entrada de ar no fluxo de material aspirado pelo equipamento durante a atividade de dragagem, diminuindo assim a turbulência na mistura dragada e reduzindo o tempo de suspensão do material resultante do overflow.

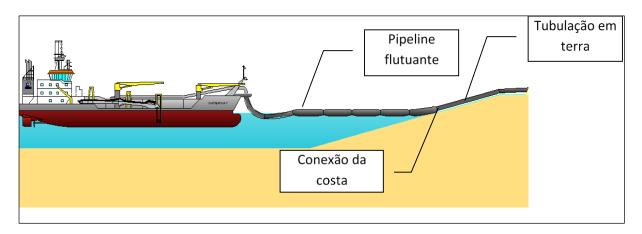


Figura 45. Diagrama esquemático do processo de descarte do material dragado por meio da conexão de uma linha de recalque no sistema de lançamento da draga autotransportadora e descarte em área terrestre.

Dessa forma, a válvula verde compreende um sistema que visa diminuir a concentração de gases dentro da mistura de sedimento-água que é lançada da cisterna para a coluna de água no processo conhecido como overflow. Em outras palavras, a válvula verde não altera o processo (ou tempo) de overflow, mas sim reduz a ressuspensão do material fino lançado na coluna de água ao remover os gases da mistura de sedimento-água. Figura 46 ilustra o processo de overflow com (esquerda) e sem (direita) a utilização da válvula verde.

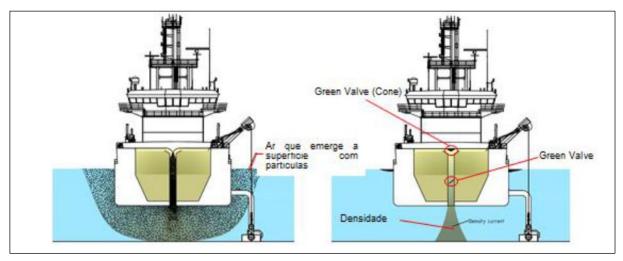


Figura 46. Ilustração esquemática do uso da válvula verde no sistema de overflow. A esquerda situação sem o uso da válvula. A direita situação com o uso da válvula verde.

10.2. COMUNICAÇÃO A CAPITANIA DOS PORTOS

Para realização de qualquer atividade marítima comercial, tanto a Marinha do Brasil quanto a Capitania dos Portos da região devem ser informadas com o intuito do fornecimento da autorização para realização da atividade. Portanto, assim que determinado o projeto executivo da dragagem, todos os documentos devem ser entregues a capitania, entre eles, o plano de balizamento para a atividade e a área a ser determinada como aviso aos navegantes para restrição de navegação. Esta área corresponde às regiões de dragagem, navegação da draga e descarte.

Será comunicado, com antecedência mínima de cinco dias úteis, a data de início das atividades de dragagem, informando as coordenadas do trecho da área a ser inicialmente dragada e as respectivas áreas de despejos, bem como o término da dragagem, para divulgação em Avisos aos Navegantes. Será também comunicado a Capitania dos Portos sobre o ritmo, período e fase detalhada das boias luminosas a serem empregadas na sinalização da área de dragagem.

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:		
	3	
FOLHA:		
	127/132	

11. CRONOGRAMA DE DRAGAGEM

Neste capítulo são apresentadas as estimativas de produtividade previstas para a draga de sucção "hopper" em cada um dos setores do sistema aquaviário a serem dragados, levando em conta o descarte do material dragado na área marinha de bota-fora (Alfa).

A Tabela 22, Tabela 23 e a Tabela 24, foram elaboradas o utilizando como base o Caderno Técnico de Dragagem do Sistema De Custos Referenciais De Obras – SICRO, considerando cenários com 0% e 100% do volume de tolerância dragado.

Em cada um dos cenários avaliados, foram empregados materiais e parâmetros distintos nas estimativas em conformidade a caracterização de sedimentos disponível no Capítulo 4, tais quais podem ser visualizados resumidamente na Tabela 21 a seguir.

Tabela 21. Dados utilizados nas estimativas de prazos de execução

Área	Material Considerado	Volume de dragagem (m³)	Volume de tolerãncia(m³)	DMT (m)
Canal Externo	Areia Média	571.251,42	493.680,60	17.000,00
Canal Interno	Areia Fina	6.940,49	153.311,57	26.700,00
Dársena e bacia de evolução	Silte	294.735,35	81.602,79	31.600,00

Tabela 22. Prazos de execução da Dragagem da Dársena e Bacia de evolução

DÁRSENA E BACIA DE EVOLUÇÃO - SILTE						
PARÂMETROS VALORES						
DADOS DE ENTRADA						
Volume a ser dragado (total de projeto)	294.735,35	m³				
Volume a ser dragado (tolerância)	81.602,79	m³				
Volume da cisterna da draga	10.000,00	m³				
Fator de conversão	0,25	-				
Fator de eficiência	0,83	-				
CÁLCULO DE DESLOCAMENTO - BOTA-FOF	RA					
Distância a ser percorrida	31,60	km				
Velocidade de navegação de ida	15,12	nós				
Velocidade de navegação de volta	16,20	nós				
RESULTADOS						

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

-

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

FOLHA:

Tempo de carga	29,47	min
Tempo de descarga	18,00	min
Tempo de ida	67,71	min
Tempo de retorno	63,20	min
Tempo total de um ciclo de dragagem e disposição	178,38	min
Prazo de execução da dragagem (0% tolerância)	18	dias
Prazo de execução da dragagem (100% tolerância)	23	dias

Tabela 23. Prazos de execução do Canal Interno

CANAL INTERNO- AREIA FINA				
PARÂMETROS	VALORES			
DADOS DE ENTRADA				
Volume a ser dragado (total de projeto)	6.940,49	m³		
Volume a ser dragado (tolerância)	153.311,57	m³		
Volume da cisterna da draga	9.552,24	m³		
Fator de conversão	0,75	-		
Fator de eficiência	0,83	-		
CÁLCULO DE DESLOCAMENTO - BOTA-FO	RA			
Distância a ser percorrida	26,70	km		
Velocidade de navegação de ida	15,12	nós		
Velocidade de navegação de volta	16,20	nós		
RESULTADOS				
Tempo de carga	105,58	min		
Tempo de descarga	18,00	min		
Tempo de ida	57,21	min		
Tempo de retorno	53,40	min		
Tempo total de um ciclo de dragagem e disposição	234,19	min		
Prazo de execução da dragagem (0% tolerância)	1	dias		
Prazo de execução da dragagem (100% tolerância)	5	dias		

Tabela 24. Prazos de execução da Dragagem do Canal Externo

CANAL EXTERNO- AREIA MÉDIA					
PARÂMETROS	VALORE	ES			
DADOS DE ENTRADA					
Volume a ser dragado (total de projeto)	571.251,42	m³			
Volume a ser dragado (tolerância)	493.680,60	m³			
Volume da cisterna da draga	9.090,91	m³			

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:

3

FOLHA:

129/132

Fator de conversão	0,80	-
Fator de eficiência	0,83	-
CÁLCULO DE DESLOCAMENTO - BOTA-FOI	RA	
Distância a ser percorrida	17,00	km
Velocidade de navegação de ida	15,12	nós
Velocidade de navegação de volta	16,20	nós
RESULTADOS		
Tempo de carga	98,60	min
Tempo de descarga	18,00	min
Tempo de ida	36,43	min
Tempo de retorno	34,00	min
Tempo total de um ciclo de dragagem e disposição	187,03	min
Prazo de execução da dragagem (0% tolerância)	13	dias
Prazo de execução da dragagem (100% tolerância)	23	dias

Na Tabela 25 a seguir é descrito o cronograma de cada trecho de dragagem, assim como os períodos de projeto executivo, mobilização e desmobilização dos equipamentos. Considerando o itinerário semanal de execução da dragagem como 7 dias, o tempo estimado para a realização da dragagem é de cerca de 8 semanas.

Tabela 25. Cronograma proposto para a dragagem da Dársena e Bacia De Evolução, Canal Interno e Canal Externo do terminal do Porto de São Francisco do Sul

DRAGAGEM - DÁRSENA E BACIA DE	DIAS								S	EM/	٩NA	S							
EVOLUÇÃO, CANAL INTERNO E CANAL	DIAS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	11	12	13	14
Projeto executivo	15																		
Mobilização dos Equipamentos	30																		
Draga Hooper - Dársena e Bacia de Evolução	23																		
Draga Hooper - Canal interno	5																		
Draga Hooper- Canal Externo	23																		
Desmobilização dos Equipamentos	30																		

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO
DRAGAGEM DE MANUTENÇÃO
SCPAR – PORTO DE SÃO FRANCISCO DO SUL
RELATÓRIO DE DRAGAGEM

REV:		••••
	3	
FOLHA:		••••
	130/132	

12. SUMÁRIO EXECUTIVO DO PROJETO

A seguir, é apresentado um breve sumário das principais informações que foram apresentadas no decorrer do presente documento, de forma a caracterizar os processos de dragagens propostos no presente projeto:

I. Levantamento batimétrico da área a ser dragada:

Os levantamentos batimétricos utilizados nos cálculos do volume de dragagem foram realizados entre os dias 27 de março a 4 de abril de 2024 pela empresa HIDROTOPO CONSULTORIA E PROJETOS LTDA, cobrindo toda a extensão do atual traçado do sistema aquaviário do Porto de São Francisco do Sul.

II. Apresentação das cotas pretendidas e cotas de eventual projeto anterior:

Conforme exposto, a dragagem será realizada na cota de -14,0 m (DHN) com tolerância vertical adicional de 0,5 metros, para a Dársena e Bacia de Evolução, Canal Interno e Canal Externo.

III. Delimitação da área a ser dragada com coordenadas georreferenciadas:

Os pontos apresentados na Tabela 26 pertencem a poligonal que delimita a área de dragagem, a qual pode ser visualizado em sua totalidade no documento de referência [8]:

Tabela 26. Coordenadas dos vértices da área de dragagem, delimitada pelo sistema aquaviário proposto. Datum horizontal SIRGAS-2000, Zona UTM 22J, hemisfério sul.

Vértice	X (Leste, m)	Y (Norte, m)
C1	750311	7101612
C2	750194	7101502
С3	745996	7105511
C4	745990	7105731
C5	735471	7097140
C6	735632	7097060
C7	735045	7096286
C8	736055	7095711
C9	736263	7095896

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM

REV:		
	3	
FOLHA:		
	131/132	

IV. Volume a ser dragado:

Estima-se a remoção de aproximadamente 872.927,26 m³ para atingir a cota de projeto de -14,0 m (DHN). Adicionando a tolerância vertical de 0,50 m estima-se um volume total de 1.601.522,22 m³ de sedimentos para dragagem. Os volumes a serem dragados por região, assim como suas respectivas tolerâncias, podem ser conferidos na Tabela 27 a seguir.

Tabela 27. Volume a serem removidos

Volumes de dragagem			
Área	Volume de projeto (m³)	Volume de tolerância(m³)	
Canal Externo	571.251,42	493.680,60	
Canal Interno	6.940,49	153.311,57	
Dársena e Bacia de Evolução	294.735,35	81.602,79	
Volumes totais	872.927,26	728.594,96	
Volume de projeto e de tolerância	1.601.522,22		

V. Delimitação das áreas de disposição propostas, com suas coordenadas georreferenciadas:

A disposição do material dragado deve ocorrer na área do bota-fora. Este é localizado entre as seguintes coordenadas (UTM-22S) expostas na Tabela 28:

Tabela 28. Coordenadas do Bota-fora. Datum horizontal SIRGAS-2000, Zona UTM 22S, hemisfério sul.

Vértices	X (E)	Y (N)
B1	755522.00	7108650.00
B2	757122.00	7108650.00
В3	755522.00	7107050.00
B4	757122.00	7107050.00

VI. Cronograma de execução:

O cronograma proposto para execução da dragagem da Dársena e Bacia de Evolução, Canal Interno e Canal Externo do Porto de São Francisco do Sul foi elaborado com base nas informações apresentadas na Tabela 25, tendo um prazo estimado de aproximadamente 8 semanas

VII. Características dos equipamentos de dragagem:

IFS-2412-220-D-RL-00001

NÚMERO CLIENTE:

--

PROJETO BÁSICO DRAGAGEM DE MANUTENÇÃO SCPAR – PORTO DE SÃO FRANCISCO DO SUL RELATÓRIO DE DRAGAGEM REV:

FOLHA:

132/132

A atividade de dragagem será executada por dragas auto-transportadoras de arrasto e sucção do tipo TSHD (*Trailing Suction Hopper Dredger*), com capacidade recomendada de 10.000 m³.

Anotação de Responsabilidade Técnica - ART CREA-SC

Lei nº 6.496, de 7 de dezembro de 1977

Conselho Regional de Engenharia e Agronomia de Santa Catarina

ART OBRA OU SERVIÇO

25 2024 **9290085-4**

Inicial Coautoria - ART Principal

1. Responsável Técnico

ANDRE MARQUES

Título Profissional: Engenheiro Civil

RNP: 1700760637 Registro: 117551-8-SC

Registro: 171942-2-SC

Empresa Contratada: INFRAS ENGENHARIA LTDA

2. Dados do Contrato

Contratante: SCPAR PORTO DE SÃO FRANCISCO DO SUL S.A.

Endereço: Av. Engenheiro Leite Complemento:

Cidade: SAO FRANCISCO DO SUL

Valor: R\$ 49.951,81

Contrato: 037-2024

Celebrado em: 21/03/2024

Bairro: Centro

UF: SC

Ação Institucional:

Tipo de Contratante: Pessoa Jurídica de Direito Público

CPF/CNPJ: 29.307.982/0001-40 Nº: 782

CPF/CNPJ: 29.307.982/0001-40

CEP: 89240-000

CEP: 89240-000

3. Dados Obra/Serviço

Proprietário: SCPAR PORTO DE SÃO FRANCISCO DO SUL S.A.

Endereço: Av. Engenheiro Leite Complemento:

Cidade: SAO FRANCISCO DO SUL

Data de Início: 21/03/2024

Finalidade: Infra-estrutura

Previsão de Término: 31/05/2024

Vinculado à ART:

Bairro: Centro UF: SC

Coordenadas Geográficas: -28.2381139

-48.6358278

Código

Nº: 782

Finalidade: Intra-estrutura				Coalgo:	
4. Atividade Técnica					
Coordenação Dragagem	Assessoria	(Consultoria	Projeto	
		Dimensão do Trabalho:	1,00	Unidade(s)	
Orçamento Dragagem					
		Dimensão do Trabalho:	1,00	Unidade(s)	
Coordenação Desassoreamento	Assessoria	ı	Projeto		
		Dimensão do Trabalho:	1,00	Unidade(s)	

5. Observaçõe:	5.	Obser	vações
----------------------------------	----	-------	--------

PROJETO BÁSICO DE ENGENHARIA PARA A DRAGAGEM DE MANUTENÇÃO DO PORTO DE SÃO FRANCISCO DO SUL/SC.

Declarações

. Acessibilidade: Declaro, sob as penas da Lei, que na(s) atividade(s) registrada(s) nesta ART não se exige a observância das regras de acessibilidade previstas nas normas técnicas de acessibilidade da ABNT, na legislação específica e no Decreto Federal n. 5.296, de 2 de dezembro de 2004.

Entidade de Classe

ABENC - 16

8. Informações

. A ART é válida somente após o pagamento da taxa.

Situação do pagamento da taxa da ART em 16/05/2024: TAXA DA ART A PAGAR

Valor ART: R\$ 262,55 | Data Vencimento: 27/05/2024 | Registrada em: 16/05/2024 Valor Pago: | Data Pagamento: | Nosso Número: 14002404000217485

. A autenticidade deste documento pode ser verificada no site www.crea-sc.org.br/art.

. A guarda da via assinada da ART será de responsabilidade do profissional e do contratante com o objetivo de documentar o vínculo contratual.

. Esta ART está sujeita a verificações conforme disposto na Súmula 473 do STF, na Lei 9.784/99 e na Resolução 1.025/09 do CONFEA.

9. Assinaturas

Declaro serem verdadeiras as informações acima.

FLORIANOPOLIS - SC, 16 de Maio de 2024

ANDRE MARQUES

029.761.579-36

Xude-

Anotação de Responsabilidade Técnica - ART CREA-SC

Lei nº 6.496, de 7 de dezembro de 1977

Conselho Regional de Engenharia e Agronomia de Santa Catarina

ART OBRA OU SERVIÇO

25 2024 **9290098-6**

Inicial

Coautoria - ART 9290085-4

1. Responsável Técnico

MATEUS PRADO LONE

Título Profissional: Engenheiro Civil

RNP: 1708205675

Registro: 130439-4-SC Registro: 171942-2-SC

Empresa Contratada: INFRAS ENGENHARIA LTDA

Contratante: SCPAR PORTO DE SÃO FRANCISCO DO SUL S.A.

Endereço: Av. Engenheiro Leite Complemento:

2. Dados do Contrato

Cidade: SAO FRANCISCO DO SUL

Valor: R\$ 49.951,81 Contrato: 037-2024

Celebrado em: 21/03/2024

Bairro: Centro

UF: SC

Ação Institucional: Tipo de Contratante: Pessoa Jurídica de Direito Público CPF/CNPJ: 29.307.982/0001-40 Nº: 782

CPF/CNPJ: 29.307.982/0001-40

CEP: 89240-000

CEP: 89240-000

3. Dados Obra/Serviço

Proprietário: SCPAR PORTO DE SÃO FRANCISCO DO SUL S.A.

Endereço: Av. Engenheiro Leite

Complemento:

Cidade: SAO FRANCISCO DO SUL Data de Início: 21/03/2024

Finalidade: Infra-estrutura

Previsão de Término: 31/05/2024

Vinculado à ART:

Bairro: Centro UF: SC

Coordenadas Geográficas:

-28.2381139 -48.6358278

Código

Nº: 782

4. Atividade Técnica Coordenação Consultoria Assessoria Projeto Dragagem Dimensão do Trabalho 1,00 Unidade(s) Orcamento Dragagem Dimensão do Trabalho 1,00 Unidade(s) Coordenação Assessoria Projeto Desassoreamento Dimensão do Trabalho: 1,00 Unidade(s)

PROJETO BÁSICO DE ENGENHARIA PARA A DRAGAGEM DE MANUTENÇÃO DO PORTO DE SÃO FRANCISCO DO SUL/SC.

Declarações

. Acessibilidade: Declaro, sob as penas da Lei, que na(s) atividade(s) registrada(s) nesta ART não se exige a observância das regras de acessibilidade previstas nas normas técnicas de acessibilidade da ABNT, na legislação específica e no Decreto Federal n. 5.296, de 2 de dezembro de 2004.

Entidade de Classe

ABENC - 16

8. Informações

. A ART é válida somente após o pagamento da taxa.

Situação do pagamento da taxa da ART em 16/05/2024: TAXA DA ART A PAGAR

Valor ART: R\$ 99,64 | Data Vencimento: 27/05/2024 | Registrada em: 16/05/2024 Valor Pago: Data Pagamento: | Nosso Número: 14002404000217500

. A autenticidade deste documento pode ser verificada no site www.crea-sc.org.br/art.

. A guarda da via assinada da ART será de responsabilidade do profissional e do contratante com o objetivo de documentar o vínculo contratual.

. Esta ART está sujeita a verificações conforme disposto na Súmula 473 do STF, na Lei 9.784/99 e na Resolução 1.025/09 do CONFEA.

9. Assinaturas

Declaro serem verdadeiras as informações acima.

FLORIANOPOLIS - SC, 16 de Maio de 2024

MATEUS PRADO LONE 042.908.689-08

Contratante: SCPAR PORTO DE SÃO FRANCISCO DO SUL S.A. 29.307.982/0001-40

www.crea-sc.org.br Fone: (48) 3331-2000

falecom@crea-sc.org.br Fax: (48) 3331-2107

Anotação de Responsabilidade Técnica - ART CREA-SC

Lei nº 6.496, de 7 de dezembro de 1977

Conselho Regional de Engenharia e Agronomia de Santa Catarina

ART OBRA OU SERVIÇO

25 2024 **9290092-7**

Inicial Coautoria - ART 9290085-4

1. Responsável Técnico

DANIEL PEREIRA CHAGAS

Título Profissional: Engenheiro Civil

RNP: 1711660027 Registro: 122853-3-SC

Registro: 171942-2-SC

Empresa Contratada: INFRAS ENGENHARIA LTDA

2. Dados do Contrato

Contratante: SCPAR PORTO DE SÃO FRANCISCO DO SUL S.A.

Endereço: Av. Engenheiro Leite Complemento:

Cidade: SAO FRANCISCO DO SUL

Valor: R\$ 49.951,81

Contrato: 037-2024

Celebrado em: 21/03/2024 Vinculado à ART: Bairro: Centro

UF: SC

Ação Institucional:

Tipo de Contratante: Pessoa Jurídica de Direito Público

CPF/CNPJ: 29.307.982/0001-40 Nº: 782

CPF/CNPJ: 29.307.982/0001-40

CEP: 89240-000

CEP: 89240-000

3. Dados Obra/Serviço

Proprietário: SCPAR PORTO DE SÃO FRANCISCO DO SUL S.A.

Endereço: Av. Engenheiro Leite Complemento:

Cidade: SAO FRANCISCO DO SUL

Data de Início: 21/03/2024

Previsão de Término: 31/05/2024

Bairro: Centro UF: SC

Coordenadas Geográficas: -28.2381139

-48.6358278

Nº: 782

Finalidade: Infra-estrutura			Código:	
4. Atividade Técnica				
Coordenação Dragagem	Assessoria	Consultoria	Projeto	
	Dimensão do Trab	alho: 1,00	Unidade(s)	
Orçamento Dragagem				
	Dimensão do Trab		Unidade(s)	
Coordenação Desassoreamento	Assessoria	Projeto		
	Dimensão do Trab	alho: 1,00	Unidade(s)	

PROJETO BÁSICO DE ENGENHARIA PARA A DRAGAGEM DE MANUTENÇÃO DO PORTO DE SÃO FRANCISCO DO SUL/SC.

Declarações

. Acessibilidade: Declaro, sob as penas da Lei, que na(s) atividade(s) registrada(s) nesta ART não se exige a observância das regras de acessibilidade previstas nas normas técnicas de acessibilidade da ABNT, na legislação específica e no Decreto Federal n. 5.296, de 2 de dezembro de 2004.

Entidade de Classe

ABENC - 16

8. Informações

. A ART é válida somente após o pagamento da taxa.

Situação do pagamento da taxa da ART em 16/05/2024: TAXA DA ART A PAGAR

Valor ART: R\$ 99,64 | Data Vencimento: 27/05/2024 | Registrada em: 16/05/2024 Valor Pago: | Data Pagamento: | Nosso Número: 14002404000217493

. A autenticidade deste documento pode ser verificada no site www.crea-sc.org.br/art.

. A guarda da via assinada da ART será de responsabilidade do profissional e do contratante com o objetivo de documentar o vínculo contratual.

. Esta ART está sujeita a verificações conforme disposto na Súmula 473 do STF, na Lei 9.784/99 e na Resolução 1.025/09 do CONFEA.

9. Assinaturas

Declaro serem verdadeiras as informações acima.

FLORIANOPOLIS - SC, 16 de Maio de 2024

DANIEL PEREIRA CHAGAS

075.829.379-88

